SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bajnoczi Eva) "

Search: WFRF:(Bajnoczi Eva)

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bajnoczi, Eva G., et al. (author)
  • The influence of the local structure of Fe(III) on the photocatalytic activity of doped TiO2 photocatalysts-An EXAFS, XPS and Mossbauer spectroscopic study
  • 2011
  • In: Applied Catalysis B: Environmental. - : Elsevier BV. - 0926-3373. ; 103:1-2, s. 232-239
  • Journal article (peer-reviewed)abstract
    • Fe(III)-doped TiO2 based heterogeneous photocatalysts were prepared by the sol-gel technique (S samples) or flame hydrolysis (F samples). In photocatalytic phenol decomposition, the undoped F-sample performed much better, than the undoped S one. However, for the S samples, photocatalytic activity first increased with the increasing Fe(III) concentration, and then passed through a maximum, while Fe(III)-doping in F samples significantly decreased it, even at the smallest dopant level. Since the same dopant caused opposite photocatalytic effects in the two series, their structure was systematically compared to identify the underlying chemical and/or physical reasons. The photocatalysts were first characterized by AAS, DRS, XRD and TEM methods and it has been shown that the differences in the photocatalytic activity cannot be explained by the minor variations in the bulk structural properties of TiO2. Mossbauer and XP spectroscopic measurements performed on representative samples qualitatively proved that the local structure of Fe(III) is different in the two series. To quantify these effects, Fe-K edge X-ray absorption measurements were performed. From the pre-edge and XANES region it was learnt that Fe(III) was present in a distorted octahedral environment in both series, however, the extent of distortion is much more significant within the S than within the F one. Information obtained from the EXAFS region indicated that the structure of Fe2O3 was much more ordered in the F-series then in the S one and vacancies were more abundant in the S than in the F series. Moreover, the geometry around Fe(III) systematically varied within the S-series, which could explain, why photocatalytic activity passed through a maximum with the increasing Fe(III) concentration in these samples. (C) 2011 Elsevier B.V. All rights reserved.
  •  
2.
  • Bajnóczi, Eva, et al. (author)
  • Speciation and structure of tin(II) in hyper-alkaline aqueous solution
  • 2014
  • In: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 43, s. 17971–17979-
  • Journal article (peer-reviewed)abstract
    • The identity of the predominating tin(II)-hydroxide complex formed in hyper-alkaline aqueous solutions (0.2 <= C-NaOH <= 12 mol dm(-3)) is determined by potentiometric titrations, Raman, Mossbauer and XANES spectroscopy, supplemented by quantum chemical calculations. Thermodynamic studies using a H-2/Pt electrode up to free hydroxide concentrations of 1 mol dm(-3) showed the presence of a single monomeric complex with a tin(II) : hydroxide ratio of 1 : 3. This observation together with Raman and Mossbauer spectroscopic measurements supplemented by quantum mechanical calculations proved that the predominating complex is [Sn(OH)(3)](-), and that the presence of the other possible complex, [SnO(OH)](-), could not be proven with either experiments or simulations. The structure of the trihydroxidostannate(II) complex, [Sn(OH)(3)](-), was determined by EXAFS and was found to be independent of the applied hydroxide and tin(II) concentrations. The mean Sn-O bond distance is short, 2.078 angstrom, and in very good agreement with the only structure reported in the solid state. It is also shown that at pH values above 13 the speciation of the predominant trihydroxidostannate(II) complex is not affected by the presence of high concentrations of chloride ions.
  •  
3.
  • Bajnóczi, Eva, et al. (author)
  • Speciation and the structure of lead(II) in hyperalkaline aqueous solution
  • 2014
  • In: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 43, s. 17539-17543
  • Journal article (peer-reviewed)abstract
    • The identity of the predominating lead(II) species in hyper-alkaline aqueous solution has been determined by Raman spectroscopy, and ab initio quantum chemical calculations and its structure has been determined by EXAFS. The observed and calculated Raman spectra for the [Pb(OH)(3)](-) complex are in agreement while they are different for two-coordinated complexes and complexes containing Pb=O double bonds. Predicted bond lengths are also consistent with the presence of [Pb(OH)(3)](-) and exclude the formation of Pb=O double bond(s). These observations together with experimentally established analogies between lead(II) and tin(II) in hyper-alkaline aqueous solutions suggest that the last stepwise hydroxido complex of lead(II) is [Pb(OH)(3)](-). The Pb-O bond distance in the [Pb(OH)(3)](-) complex as determined is remarkably short, 2.216 angstrom, and has low symmetry as no multiple back-scattering is observed. The [Pb(OH)(3)](-) complex has most likely trigonal pyramidal geometry as all reported three-coordinated lead(II) complexes in the solid state. From single crystal X-ray data, the bond lengths for O-coordinated lead(II) complexes with low coordination numbers are spread over an unusually wide interval, 2.216-2.464 angstrom for N = 3. The Pb-O bond distance is at the short side and within the range of three coordinated complexes, as also observed for the trihydroxidostannate(II) complex indicating that the hydroxide ion forms short bonds with d(10)s(2) metal ions with occupied anti-bonding orbitals.
  •  
4.
  • Csendes, Zita, et al. (author)
  • Superoxide dismutase inspired immobilised Ni(II)-protected amino acid catalysts Synthesis, characterisation, and catalytic activity
  • 2014
  • In: Journal of Molecular Catalysis A: Chemical. - : Elsevier BV. - 1381-1169. ; 395, s. 93-99
  • Journal article (peer-reviewed)abstract
    • Covalently anchored Ni(II)-C-protected amino acid (L-histidine, L-cysteine, and L-cystine) complexes inspired by the active site of the Ni-superoxide dismutase enzyme were synthesised using chloropropylated silica gel as support. The structural features of the surface complexes were studied by the Kjeldahl method and ICP-MS, mid/far IR, UV-vis diffuse reflectance, and X-ray absorption spectroscopies. The enzyme-like activities of the materials were determined in a biochemical test reaction. Covalent grafting and building the complex onto the surface of the support were successful in all cases. It was found that in many instances the structures obtained and the coordinating groups substantially varied upon changing the conditions of the syntheses. All the covalently immobilised Ni(II)-complexes displayed enzyme-like activity. They also were active in the liquid-phase oxidation of cyclohexene, providing the epoxide with high selectivity. (C) 2014 Elsevier B.V. All rights reserved.
  •  
5.
  • Gustafson, Karl P. J., et al. (author)
  • In Situ Structural Determination of a Homogeneous Ruthenium Racemization Catalyst and Its Activated Intermediates Using X-Ray Absorption Spectroscopy
  • 2020
  • In: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 26:15, s. 3411-3419
  • Journal article (peer-reviewed)abstract
    • The activation process of a known Ru-catalyst, dicarbonyl(pentaphenylcyclopentadienyl)ruthenium chloride, has been studied in detail using time resolved in situ X-ray absorption spectroscopy. The data provide bond lengths of the species involved in the process as well as information about bond formation and bond breaking. On addition of potassium tert-butoxide, the catalyst is activated and an alkoxide complex is formed. The catalyst activation proceeds via a key acyl intermediate, which gives rise to a complete structural change in the coordination environment around the Ru atom. The rate of activation for the different catalysts was found to be highly dependent on the electronic properties of the cyclopentadienyl ligand. During catalytic racemization of 1-phenylethanol a fast-dynamic equilibrium was observed.
  •  
6.
  •  
7.
  • Kjær, Kasper S., et al. (author)
  • Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy
  • 2019
  • In: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 10:22, s. 5749-5760
  • Journal article (peer-reviewed)abstract
    • Light-driven molecular reactions are dictated by the excited state potential energy landscape, depending critically on the location of conical intersections and intersystem crossing points between potential surfaces where non-adiabatic effects govern transition probabilities between distinct electronic states. While ultrafast studies have provided significant insight into electronic excited state reaction dynamics, experimental approaches for identifying and characterizing intersections and seams between electronic states remain highly system dependent. Here we show that for 3d transition metal systems simultaneously recorded X-ray diffuse scattering and X-ray emission spectroscopy at sub-70 femtosecond time-resolution provide a solid experimental foundation for determining the mechanistic details of excited state reactions. In modeling the mechanistic information retrieved from such experiments, it becomes possible to identify the dominant trajectory followed during the excited state cascade and to determine the relevant loci of intersections between states. We illustrate our approach by explicitly mapping parts of the potential energy landscape dictating the light driven low-to-high spin-state transition (spin crossover) of [Fe(2,2′-bipyridine)3]2+, where the strongly coupled nuclear and electronic dynamics have been a source of interest and controversy. We anticipate that simultaneous X-ray diffuse scattering and X-ray emission spectroscopy will provide a valuable approach for mapping the reactive trajectories of light-triggered molecular systems involving 3d transition metals.
  •  
8.
  • Kjær, Kasper S., et al. (author)
  • Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2′-bipyridine)(CN)4]2-
  • 2018
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 20:6, s. 4238-4249
  • Journal article (peer-reviewed)abstract
    • The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2′-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN)4]2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile.1,2 In the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet (3MC) character, unlike other reported six-coordinate Fe(ii)-centered coordination compounds, which form MC quintet (5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN)4]2- allows us to infer the influence of the solvent on the electronic structure of the complex. Furthermore, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.
  •  
9.
  • Kunnus, Kristjan, et al. (author)
  • Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering
  • 2020
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kβ X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.
  •  
10.
  • Łyczko, Krzysztof, et al. (author)
  • Striking stability of a mixed-valence thallium(III)-thallium(I) complex in some solvents
  • 2023
  • In: Journal of Molecular Liquids. - 0167-7322. ; 385
  • Journal article (peer-reviewed)abstract
    • At the dissolution of solid anhydrous thallium(III) trifluoromethanesulfonate, Tl(CF3SO3)3, or thallium(III) trifluoroacetate, Tl(CF3COO)3, in dimethylsulfoxide (dmso) or N,N,N’,N’-tetramethylurea (tmu), intensely red-colored complexes are formed. This red thallium complex is stable for years in dmso, while it is reduced fairly rapidly to thallium(I) in tmu with a half-life time of an hour. At the dissolution of Tl(CF3SO3)3 in N,N-dimethylpropyleneurea (dmpu) an immediate reduction to thallium(I) takes place. A stable colorless aqueous thallium(III) solution is obtained at the dissolution in acidic water. Stable dmso solutions and solid dmso solvates of thallium(III) perchlorate, nitrate and trifluormethanesulfonate can be prepared by adding dmso to concentrated acidic aqueous thallium(III) solutions. These experimental observations conclude that the pure solids Tl(CF3SO3)3 and Tl(CF3COO)3 play an essential role in the formation of the red-colored thallium complexes. 205Tl NMR data show that the red thallium complex contains equal amounts of thallium(III) and thallium(I). The structure of the red thallium complex in dmso, as determined by EXAFS, has Tl–O bond distances of 2.216(3) and 2.80(2) Å, which are in very close agreement with the bond distances obtained in the pure dmso solvates of the thallium(III) and thallium(I) ions, respectively, and a Tl···Tl distance of 3.49(1) Å bridged by oxygen atoms. From the EXAFS data it is impossible to distinguish if dmso molecules and/or trifluoromethanesulfonate ions act as bridges. DFT calculations could eliminate some structures due to the irrelevant structural parameters or the energetics of the proposed reactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view