SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Baker Wesley B.) "

Search: WFRF:(Baker Wesley B.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Jang, David H., et al. (author)
  • Alterations in cerebral and cardiac mitochondrial function in a porcine model of acute carbon monoxide poisoning
  • 2021
  • In: Clinical Toxicology. - : Informa UK Limited. - 1556-3650 .- 1556-9519. ; 59:9, s. 801-809
  • Journal article (peer-reviewed)abstract
    • Objectives: The purpose of this study is the development of a porcine model of carbon monoxide (CO) poisoning to investigate alterations in brain and heart mitochondrial function. Design: Two group large animal model of CO poisoning. Setting: Laboratory. Subjects: Ten swine were divided into two groups: Control (n = 4) and CO (n = 6). Interventions: Administration of a low dose of CO at 200 ppm to the CO group over 90 min followed by 30 min of re-oxygenation at room air. The Control group received room air for 120 min. Measurements: Non-invasive optical monitoring was used to measure cerebral blood flow and oxygenation. Cerebral microdialysis was performed to obtain semi real time measurements of cerebral metabolic status. At the end of the exposure, both fresh brain (cortical and hippocampal tissue) and heart (apical tissue) were immediately harvested to measure mitochondrial respiration and reactive oxygen species (ROS) generation and blood was collected to assess plasma cytokine concentrations. Main results: Animals in the CO group showed significantly decreased Complex IV-linked mitochondrial respiration in hippocampal and apical heart tissue but not cortical tissue. There also was a significant increase in mitochondrial ROS generation across all measured tissue types. The CO group showed a significantly higher cerebral lactate-to-pyruvate ratio. Both IL-8 and TNFα were significantly increased in the CO group compared with the Control group obtained from plasma. While not significant there was a trend to an increase in optically measured cerebral blood flow and hemoglobin concentration in the CO group. Conclusions: Low-dose CO poisoning is associated with early mitochondrial disruption prior to an observable phenotype highlighting the important role of mitochondrial function in the pathology of CO poisoning. This may represent an important intervenable pathway for therapy and intervention.
  •  
3.
  • Lewis, Alistair T., et al. (author)
  • Preliminary Research : Application of Non-Invasive Measure of Cytochrome c Oxidase Redox States and Mitochondrial Function in a Porcine Model of Carbon Monoxide Poisoning
  • 2022
  • In: Journal of Medical Toxicology. - : Springer Science and Business Media LLC. - 1556-9039 .- 1937-6995. ; 18:3, s. 214-222
  • Journal article (peer-reviewed)abstract
    • Introduction: Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). The purpose of this ongoing study is the preliminary development of a porcine model of CO poisoning for investigation of alterations in brain mitochondrial physiology. Methods: Four pigs (10 kg) were divided into two groups: Sham (n = 2) and CO (n = 2). Administration of a dose of CO at 2000 ppm to the CO group over 120 minutes followed by 30 minutes of re-oxygenation at room air. The control group received room air for 150 minutes. Non-invasive optical monitoring was used to measure CIV redox states. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. At the end of the exposure, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. Snap frozen cortical tissue was also used for ATP concentrations and western blotting. Results: While a preliminary ongoing study, animals in the CO group showed possible early decreases in brain mitochondrial respiration, citrate synthase density, CIV redox changes measured with optics, and an increase in the lactate-to-pyruvate ratio. Conclusions: There is a possible observable phenotype highlighting the important role of mitochondrial function in the injury of CO poisoning.
  •  
4.
  • Mavroudis, Constantine D., et al. (author)
  • Investigation of Cerebral Mitochondrial Injury in a Porcine Survivor Model of Carbon Monoxide Poisoning
  • 2024
  • In: Journal of Medical Toxicology. - 1556-9039. ; 20:1, s. 39-48
  • Journal article (peer-reviewed)abstract
    • Introduction: Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). One of the glaring gaps is the lack of rigorous experimental models that may recapitulate survivors of acute CO poisoning in the early phase. The primary objective of this preliminary study is to use our advanced swine platform of acute CO poisoning to develop a clinically relevant survivor model to perform behavioral assessment and MRI imaging that will allow future development of biomarkers and therapeutics. Methods: Four swine (10 kg) were divided into two groups: control (n = 2) and CO (n = 2). The CO group received CO at 2000 ppm for over 120 min followed by 30 min of re-oxygenation at room air for one swine and 150 min followed by 30 min of re-oxygenation for another swine. The two swine in the sham group received room air for 150 min. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. Following exposures, all surviving animals were observed for a 24-h period with neurobehavioral assessment and imaging. At the end of the 24-h period, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. Results: While a preliminary ongoing study, animals in the CO group showed alterations in cerebral metabolism and cellular function in the acute exposure phase with possible sustained mitochondrial changes 24 h after the CO exposure ended. Conclusions: This preliminary research further establishes a large animal swine model investigating survivors of CO poisoning to measure translational metrics relevant to clinical medicine that includes a basic neurobehavioral assessment and post exposure cellular measures.
  •  
5.
  • Tavares, Julia, et al. (author)
  • Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
  • 2023
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7959, s. 111-117
  • Journal article (peer-reviewed)abstract
    • Tropical forests face increasing climate risk(1,2), yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, ?(50)) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk(3-5), little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters ?(50) and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both ?(50) and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM(50 )forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon(6,7), with strong implications for the Amazon carbon sink.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5
Type of publication
journal article (5)
Type of content
peer-reviewed (5)
Author/Editor
Shofer, Frances S. (3)
Greenwood, John C. (3)
Ehinger, Johannes K. (3)
Kilbaugh, Todd J. (3)
Jang, David H. (3)
Phillips, Oliver L. (2)
show more...
Piel, Sarah (2)
Diaz, Sandra (1)
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Bond-Lamberty, Ben (1)
Moretti, Marco (1)
Wang, Feng (1)
Verheyen, Kris (1)
Graae, Bente Jessen (1)
Isaac, Marney (1)
Malhi, Yadvinder (1)
Lewis, Simon L. (1)
Baker, Timothy R. (1)
Zieminska, Kasia (1)
Jackson, Robert B. (1)
Reichstein, Markus (1)
Hickler, Thomas (1)
Rogers, Alistair (1)
Manzoni, Stefano (1)
Pakeman, Robin J. (1)
Poschlod, Peter (1)
Dainese, Matteo (1)
Ruiz-Peinado, Ricard ... (1)
van Bodegom, Peter M ... (1)
Wellstein, Camilla (1)
Gross, Nicolas (1)
Violle, Cyrille (1)
Björkman, Anne, 1981 (1)
Rillig, Matthias C. (1)
Tappeiner, Ulrike (1)
Alomaja, Oladunni (1)
Mesaros, Clementina (1)
Kao, Shih Han (1)
Shin, Samuel S. (1)
MARQUES, MARCIA (1)
Jactel, Hervé (1)
Castagneyrol, Bastie ... (1)
Scherer-Lorenzen, Mi ... (1)
van der Plas, Fons (1)
Cromsigt, Joris (1)
Jenkins, Thomas (1)
Boeckx, Pascal (1)
Estiarte, Marc (1)
Jentsch, Anke (1)
show less...
University
Lund University (3)
University of Gothenburg (1)
Uppsala University (1)
Stockholm University (1)
Karlstad University (1)
Swedish University of Agricultural Sciences (1)
Language
English (5)
Research subject (UKÄ/SCB)
Medical and Health Sciences (3)
Natural sciences (1)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view