SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bakker D.C.E.) "

Sökning: WFRF:(Bakker D.C.E.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bakker, D. C. E., et al. (författare)
  • A multi-decade record of high-quality fCO(2) data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)
  • 2016
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 8:2, s. 383-413
  • Tidskriftsartikel (refereegranskat)abstract
    • The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO(2) (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO(2) values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO(2) values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO(2) values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO(2) has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi: 10.3334/CDIAC/OTG.SOCAT_V3_GRID.
  •  
2.
  • Bakker, D. C. E., et al. (författare)
  • An update to the surface ocean CO2 atlas (SOCAT version 2)
  • 2014
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 6:1, s. 69-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO 2 values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models. © Author(s) 2014. CC Attribution 3.0 License.
  •  
3.
  • Droste, E. S., et al. (författare)
  • The influence of tides on the marine carbonate chemistry of a coastal polynya in the south-eastern Weddell Sea
  • 2022
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 18:5, s. 1293-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • Tides significantly affect polar coastlines by modulating ice shelf melt and modifying shelf water properties through transport and mixing. However, the effect of tides on the marine carbonate chemistry in such regions, especially around Antarctica, remains largely unexplored. We address this topic with two case studies in a coastal polynya in the south-eastern Weddell Sea, neighbouring the Ekstrom Ice Shelf. The case studies were conducted in January 2015 (PS89) and January 2019 (PS117), capturing semi-diurnal oscillations in the water column. These are pronounced in both physical and biogeochemical variables for PS89. During rising tide, advection of sea ice meltwater from the north-east created a fresher, warmer, and more deeply mixed water column with lower dissolved inorganic carbon (DIC) and total alkalinity (TA) content. During ebbing tide, water from underneath the ice shelf decreased the polynya's temperature, increased the DIC and TA content, and created a more stratified water column. The variability during the PS117 case study was much smaller, as it had less sea ice meltwater input during rising tide and was better mixed with sub-ice shelf water. The contrasts in the variability between the two case studies could be wind and sea ice driven, and they underline the complexity and highly dynamic nature of the system. The variability in the polynya induced by the tides results in an air-sea CO2 flux that can range between a strong sink (-24 mmol m(-2) d(-1)) and a small source (3 mmol m(-2) d(-1)) on a semi-diurnal timescale. If the variability induced by tides is not taken into account, there is a potential risk of overestimating the polynya's CO2 uptake by 67 % or underestimating it by 73 %, compared to the average flux determined over several days. Depending on the timing of limited sampling, the polynya may appear to be a source or a sink of CO2. Given the disproportionate influence of polynyas on heat and carbon exchange in polar oceans, we recommend future studies around the Antarctic and Arctic coastlines to consider the timing of tidal currents in their sampling strategies and analyses. This will help constrain variability in oceanographic measurements and avoid potential biases in our understanding of these highly complex systems.
  •  
4.
  • Heinze, Christoph, et al. (författare)
  • The ocean carbon sink – impacts, vulnerabilities, and challenges
  • 2015
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 6, s. 327-358
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbon dioxide (CO 2 ) is, next to water vapour, considered to be the most important natural green- house gas on Earth. Rapidly rising atmospheric CO 2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strate- gies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO 2 concentrations and currently take up about 25 % of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with re- spect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air–sea flux values for natural and anthropogenic CO 2 as well as on increased CO 2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed
  •  
5.
  • Hennige, S. J., et al. (författare)
  • Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification
  • 2014
  • Ingår i: Deep-sea research. Part II, Topical studies in oceanography. - : Elsevier BV. - 0967-0645 .- 1879-0100. ; 99, s. 27-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to similar to 8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4 +/- 1.39 SE, gmol O-2 g(-1) tissue dry weight h(-1)) than corals in control conditions (28.6 +/- 7.30 SE mu mol O-2 g(-1) tissue dry weight h(-1)). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and C-14 uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species. 
  •  
6.
  • Schuster, U., et al. (författare)
  • Measurements of total alkalinity and inorganic dissolved carbon in the Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010
  • 2014
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 6:1, s. 175-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Water column dissolved inorganic carbon and total alkalinity were measured during five hydrographic sections in the Atlantic Ocean and Drake Passage. The work was funded through the Strategic Funding Initiative of the UK's Oceans2025 programme, which ran from 2007 to 2012. The aims of this programme were to establish the regional budgets of natural and anthropogenic carbon in the North Atlantic, the South Atlantic, and the Atlantic sector of the Southern Ocean, as well as the rates of change of these budgets. This paper describes in detail the dissolved inorganic carbon and total alkalinity data collected along east-west sections at 47 degrees N to 60 degrees N, 24.5 degrees N, and 24 degrees S in the Atlantic and across two Drake Passage sections. Other hydrographic and biogeochemical parameters were measured during these sections, and relevant standard operating procedures are mentioned here. Over 95% of dissolved inorganic carbon and total alkalinity samples taken during the 24.5 degrees N, 24 degrees S, and the Drake Passage sections were analysed onboard and subjected to a first-level quality control addressing technical and analytical issues. Samples taken along 47 degrees N to 60 degrees N were analysed and subjected to quality control back in the laboratory. Complete post-cruise second-level quality control was performed using crossover analysis with historical data in the vicinity of measurements, and data were submitted to the CLIVAR and Carbon Hydrographic Data Office (CCHDO), the Carbon Dioxide Information Analysis Center (CDIAC) and and will be included in the Global Ocean Data Analyses Project, version 2 (GLODAP 2), the upcoming update of Key et al. (2004).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy