SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Balian Alien) "

Search: WFRF:(Balian Alien)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Balian, Alien, et al. (author)
  • Kinetic Screening of Nuclease Activity using Nucleic Acid Probes
  • 2019
  • In: Journal of Visualized Experiments. - United States : JOURNAL OF VISUALIZED EXPERIMENTS. - 1940-087X. ; :153
  • Journal article (peer-reviewed)abstract
    • Nucleases are a class of enzymes that break down nucleic acids by catalyzing the hydrolysis of the phosphodiester bonds that link the ribose sugars. Nucleases display a variety of vital physiological roles in prokaryotic and eukaryotic organisms, ranging from maintaining genome stability to providing protection against pathogens. Altered nuclease activity has been associated with several pathological conditions including bacterial infections and cancer. To this end, nuclease activity has shown great potential to be exploited as a specific biomarker. However, a robust and reproducible screening method based on this activity remains highly desirable. Herein, we introduce a method that enables screening for nuclease activity using nucleic acid probes as substrates, with the scope of differentiating between pathological and healthy conditions. This method offers the possibility of designing new probe libraries, with increasing specificity, in an iterative manner. Thus, multiple rounds of screening are necessary to refine the probes design with enhanced features, taking advantage of the availability of chemically modified nucleic acids. The considerable potential of the proposed technology lies in its flexibility, high reproducibility, and versatility for the screening of nuclease activity associated with disease conditions. It is expected that this technology will allow the development of promising diagnostic tools with a great potential in the clinic.
  •  
2.
  • Balian, Alien, 1988- (author)
  • Nuclease Activity as a Biomarker in Cancer Detection
  • 2023
  • Doctoral thesis (other academic/artistic)abstract
    • Nucleases are a group of enzymes that cleave the phosphodiester bonds in nucleic acids. As such, nucleases act as biological scissors that exhibit a plethora of fundamental roles, in prokaryotes and eukaryotes, dependent or non-dependent on their catalytic capability. Thus, differential status of nucleases between healthy and disease conditions might not be surprising, and can be deployed in disease detection. Specifically, there is growing body of research demonstrating the potential of nucleases as diagnostic biomarkers in several types of cancer. Biomarkers for early diagnosis are an immense need in the diagnostic landscape of cancer. In this sense, nucleases are promising biomolecules, and they possess a unique feature of catalytic activity that could be deployed for diagnosis and future therapeutic strategies.    In this thesis we aim to demonstrate the use of nucleases as biomarkers associated to cancer, and the capability of oligonucleotide substrates for targeting a specific nuclease.  The thesis work begins with comprehensive review of nucleases as promising biomarkers in cancer diagnosis (paper I). Then, we provide a methodological study in paper II, in which we propose a flexible approach for detection of disease associated nuclease activity using oligonucleotides as substrates. The probes utilized here are flanked with fluorophore at the 5’-end and a quencher at the 3’-end. Upon cleavage by nucleases, the fluorescent signal is increased in a proportional fashion to nuclease activity. This platform is suitable to implement in detection of any disease in which nuclease activity is altered.   We have applied this method in paper III, by using 75 probes as substrates to screen breast cancer cells, along with controls, for nuclease activity. We have identified a probe (DNA PolyAT) that discriminates between BT-474 breast cancer cells and healthy cells based on nuclease activity profile associated with cell membrane. Next, we screened tissue samples from breast tumors for nuclease activity, and we have identified a set of probes with the capability to discriminate breast tumor and healthy tissues in 89% of the cases (paper IV). To achieve a step forward towards non-invasive diagnosis, we have developed an activatable magnetic resonance imaging (MRI)-probe (paper V). The MRI-probe is oligonucleotide-based that works like a contrast agent, and it is activated only in presence of a specific nuclease. MRI-probes provide advantages over fluorescent probes, such as high spatial resolution and unlimited tissue penetration. In conclusion, our findings suggest the utility of nuclease activity as a biomarker in cancer detection. Moreover, we demonstrate the applicability of nuclease activity-based approaches in imaging modalities, such as MRI. Our future aim is to translate our findings into non-invasive detection of breast cancer by utilizing breast cancer activatable MRI-probes. 
  •  
3.
  • Balian, Alien, et al. (author)
  • Nucleases as molecular targets for cancer diagnosis
  • 2021
  • In: Biomarker Research. - : BMC. - 2050-7771. ; 9:1
  • Research review (peer-reviewed)abstract
    • Early cancer diagnosis is a crucial element to improved treatment options and survival. Great research efforts have been made in the search for better performing cancer diagnostic biomarkers. However, the quest continues as novel biomarkers with high accuracy for an early diagnosis remain an unmet clinical need. Nucleases, which are enzymes capable of cleaving nucleic acids, have been long considered as potential cancer biomarkers. The implications of nucleases are key for biological functions, their presence in different cellular counterparts and catalytic activity led the enthusiasm towards investigating the role of nucleases as promising cancer biomarkers. However, the most essential feature of these proteins, which is their enzymatic activity, has not been fully exploited. This review discusses nucleases interrogated as cancer biomarkers, providing a glimpse of their physiological roles. Moreover, it highlights the potential of harnessing the enzymatic activity of cancer-associated nucleases as a novel diagnostic biomarker using nucleic acid probes as substrates.
  •  
4.
  • Hernandez, Luiza I., et al. (author)
  • Discovery and Proof-of-Concept Study of Nuclease Activity as a Novel Biomarker for Breast Cancer Tumors
  • 2021
  • In: Cancers. - : MDPI. - 2072-6694. ; 13:2
  • Journal article (peer-reviewed)abstract
    • Simple Summary A diagnostic biomarker for the detection of breast cancer remains an unmet clinical need despite decades of intensive research efforts. Herein, we describe, for the first time, the use of nuclease activity as a biomarker to discriminate between healthy and cancer biopsy samples. We have identified a panel of three nucleic acid probes able to target nucleases derived from breast cancer tumors with high sensitivity and specificity. These results are in good agreement with histopathological analysis as the diagnostic gold standard. Moreover, these findings support nuclease activity as a potential adjacent diagnostic tool and shed light on the use of nuclease activity as a detection biomarker in breast cancer. Breast cancer is one of the most common pathologies diagnosed in the clinical practice. Despite major advancements in diagnostic approaches, there is no widely accepted biomarker in the clinical practice that can diagnose breast malignancy. Confirmatory diagnosis still relies on the pathological assessment of tissue biopsies by expert pathologists. Thus, there is an unmet need for new types of biomarkers and novel platform technologies that can be easily and robustly integrated into the clinic and that can assist pathologists. Herein, we show that nuclease activity associated to malignant tumors can be used as a novel biomarker in breast cancer, which can be detected via specific degradation of nucleic acid probes. In this study we have identified a set of three chemically modified nucleic acid probes that can diagnose malignancy in biopsy samples with high accuracy (89%), sensitivity (82%) and specificity (94%). This work represents a breakthrough for the potential clinical use of nuclease activity as biomarker, which can be detected via nucleic acids probes, for the clinical diagnosis of malignancy in breast tissue biopsies. This platform technology could be readily implemented into the clinic as adjunct to histopathological diagnostic.
  •  
5.
  • Periyathambi, Prabu, et al. (author)
  • Activatable MRI probes for the specific detection of bacteria
  • 2021
  • In: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 413:30, s. 7353-7362
  • Journal article (peer-reviewed)abstract
    • Activatable fluorescent probes have been successfully used as molecular tools for biomedical research in the last decades. Fluorescent probes allow the detection of molecular events, providing an extraordinary platform for protein and cellular research. Nevertheless, most of the fluorescent probes reported are susceptible to interferences from endogenous fluorescence (background signal) and limited tissue penetration is expected. These drawbacks prevent the use of fluorescent tracers in the clinical setting. To overcome the limitation of fluorescent probes, we and others have developed activatable magnetic resonance probes. Herein, we report for the first time, an oligonucleotide-based probe with the capability to detect bacteria using magnetic resonance imaging (MRI). The activatable MRI probe consists of a specific oligonucleotide that targets micrococcal nuclease (MN), a nuclease derived from Staphylococcus aureus. The oligonucleotide is flanked by a superparamagnetic iron oxide nanoparticle (SPION) at one end, and by a dendron functionalized with several gadolinium complexes as enhancers, at the other end. Therefore, only upon recognition of the MRI probe by the specific bacteria is the probe activated and the MRI signal can be detected. This approach may be widely applied to detect bacterial infections or other human conditions with the potential to be translated into the clinic as an activatable contrast agent.
  •  
6.
  • Sandström, Josefine, et al. (author)
  • IP6K2 predicts favorable clinical outcome of primary breast cancer
  • 2021
  • In: Molecular and clinical oncology. - : Spandidos Publication Ltd. - 2049-9450 .- 2049-9469. ; 14:5
  • Journal article (peer-reviewed)abstract
    • The inositol hexakisphosphate kinase (IP6K) 1 and 2 genes are localized at 3p21.31, a highly altered gene-dense chromosomal region in cancer. The IP6Ks convert IP6 to IP7, which inhibits activation of the tumor-promoting PI3K/Akt/mTOR signaling pathway. IP6K2 has been suggested to be involved in p53-induced apoptosis, while IP6K1 may stimulate tumor growth and migration. The present study aimed to elucidate the role of the two IP6Ks in predicting outcome in patients with breast cancer. To the best of our knowledge, the role of IP6K was analyzed for the first time in tumors from three cohorts of patients with breast cancer; one Swedish low-risk cohort, one Dutch cohort and the TCGA dataset. Analyses of gene -and protein expression and subcellular localization were included. IP6K2 gene expression was associated with ER positivity and nuclear p-Akt. Improved prognosis was detected with high IP6K2 gene expression compared with low IP6K2 gene expression in systemically untreated patients in the Swedish low-risk and Dutch cohorts. In the TCGA dataset, IP6K2 prognostic value was significant when selecting for tumors with wild-type TP53. A multivariable analysis testing IP6K2 against other cancer-related genes at 3p.21.31, including IP6K1 and clinical biomarkers, revealed that IP6K2 was associated with decreased risk of distant recurrence. IP6K1 was associated with increased risk of distant recurrence in the multivariable test and protein analysis revealed trends of worse prognosis with high IP6K1 in the cytoplasm. The expression levels of IP6K1 and IP6K2 were associated to a high extent; however, a diverging prognostic value of the two genes was observed in breast cancer. The present data suggest that IP6K2 can be a favorable prognostic factor, while IP6K1 may not be.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view