SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Band Hamid) "

Search: WFRF:(Band Hamid)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Hongxia, et al. (author)
  • PRL2 Phosphatase Promotes Oncogenic KIT Signaling in Leukemia Cells through Modulating CBL Phosphorylation
  • 2024
  • In: Molecular Cancer Research. - 1541-7786. ; 22:1, s. 94-103
  • Journal article (peer-reviewed)abstract
    • Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells.
  •  
2.
  • Lindholm, Cecilia, 1969- (author)
  • Shb and Its Homologues: Signaling in T Lymphocytes and Fibroblasts
  • 2002
  • Doctoral thesis (other academic/artistic)abstract
    • Stimulation of the T cell receptor (TCR) induces tyrosine phosphorylation of numerous intracellular proteins, leading to activation of the interleukin-2 (IL-2) gene in T lymphocytes. Shb is a ubiquitously expressed adapter protein, with the ability to associate with the T cell receptor and several signaling proteins in T cells, including: the TCR ζ-chain, LAT, PLC-γ1, Vav, SLP-76 and Gads. Jurkat T cells expressing Shb with a mutation in the SH2 domain, exhibited reduced phosphorylation of several proteins and abolished activation of the MAP kinases ERK1, ERK2 and JNK, upon CD3 stimulation. The TCR induced Ca2+ response in these cells was abolished, together with the activation of the IL-2 promoter via the transcription factor NFAT. Consequently, IL-2 production was also perturbed in these cells, compared to normal Jurkat T cells. Shb was also seen to associate with the β and γ chains of the IL-2 receptor, upon IL-2 stimulation, in T and NK cells. This association occurred between the Shb SH2 domain and Tyr-510 of the IL-2R β chain. The proline-rich domains of Shb were found to associate with the tyrosine kinases JAK1 and JAK3, which are important for STAT-mediated proliferation of T and NK cells upon IL-2 stimulation. Shb was also found to be involved in IL-2 mediated regulation of apoptosis. These findings indicate a dual role for Shb in T cells, where Shb is involved in both T cell receptor and IL-2 receptor signaling. A Shb homologue, Shf was identified, and seen to associate with the PDGF-α-receptor. Shf shares high sequence homology with Shb and a Shd (also of the Shb family) in the SH2 domain and in four motifs containing putative tyrosine phosphorylation sites. When Shf was overexpressed in fibroblasts, these cells displayed significantly lower rates of apoptosis than control cells in the presence of PDGF-AA. These findings suggest a role for the novel adapter Shf in PDGF-receptor signaling and regulation of apoptosis.
  •  
3.
  • Masson, Kristina, et al. (author)
  • Direct binding of Cbl to Tyr(568) and Tyr(936) of the stem cell factor receptor/c-Kit is required for ligand-induced ubiquitination, internalization and degradation
  • 2006
  • In: Biochemical Journal. - 0264-6021. ; 399, s. 59-67
  • Journal article (peer-reviewed)abstract
    • The ubiquitin E3 ligase Cbl has been shown to negatively regulate tyrosine kinase receptors, including the stem cell factor receptor/c-Kit. Impaired recruitment of Cbl to c-Kit results in a deregulated positive signalling that eventually can contribute to carcinogenesis. Here, we present results showing that Cbl is activated by the SFKs (Src family kinases) and recruited to c-Kit in order to trigger receptor ubiquitination. We demonstrate that phosphorylated Tyr(568) and Tyr(936) in c-Kit are involved in direct binding and activation of Cbl and that binding of the TKB domain (tyrosine kinase binding domain) of Cbl to c-Kit is specified by the presence of an isoleucine or leucine residue in position +3 to the phosphorylated tyrosine residue on c-Kit. Apart from the direct association between Cbl and c-Kit, we show that phosphorylation of Cbl by SFK members is required for activation of Cbl to occur. Moreover, we demonstrate that Cbl mediates mono-ubiquitination of c-Kit and that the receptor is subsequently targeted for lysosomal degradation. Taken together, our findings reveal novel insights into the mechanisms by which Cbl negatively regulates c-Kit-mediated signalling.
  •  
4.
  • Welsh, Michael, et al. (author)
  • Stimulation through the T cell receptor leads to interactions between SHB and several signaling proteins
  • 1998
  • In: Oncogene. - 0950-9232 .- 1476-5594. ; 16:7, s. 891-901
  • Journal article (peer-reviewed)abstract
    • Shb is a recently described Src homology 2 (SH2) domain-containing adaptor protein. Here we show that Shb is expressed in lymphoid tissues, and is recruited into signaling complexes upon activation of Jurkat T cells. Grb2 binds proline-rich motifs in Shb via its SH3 domains. As a result, a number of proteins detected in anti-Shb and anti-Grb2 immunoprecipitates are shared, including phosphoproteins of 22, 36/38, 55/57 and 70 kDa. Shb-association with p22, which represents the T cell receptor associated chain, occurs through the Shb SH2 domain. The central region of Shb binds p36/38. Since this interaction was inhibited by phosphotyrosine, this region of Shb is likely to contain a non-SH2 PTB (phosphotyrosine binding) domain. The Shb PTB domain was found to preferentially bind the sequence Asp-Asp-X-pTyr when incubated with a phosphopeptide library. A peptide corresponding to a phosphorylation site in 34 kDa Lnk inhibited association between Shb and p36/38. Overexpression of Shb in Jurkat cells led to increased basal phosphorylation of Shb-associated p36/38 and p70 proteins. Inactivation of the Shb SH2 domain by an R522K mutation resulted in a reduced stimulation of tyrosine phosphorylation of several proteins in response to CD3 crosslinking when expressed in Jurkat cells. Together, our results show three distinct domains of Shb all participate in the formulation of multimeric signaling complexes in activated T cells. These results indicate that the Shb protein functions in T cell receptor signaling.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view