SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bandara Tmwj) "

Search: WFRF:(Bandara Tmwj)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bandara, Tmwj, et al. (author)
  • Nano structured diatom frustules incorporated into TiO2 photoelectrodes to enhance performance of quasi-solid-state dye-sensitized solar cells
  • 2023
  • In: Optical Materials. - 0925-3467. ; 146
  • Journal article (peer-reviewed)abstract
    • Diatom frustules are incorporated into multilayer photoelectrodes intending to enhance efficiency in dyesensitized solar cells utilizing their light interaction properties. A specific, but ubiquitous in all oceans, pennate-type diatom frustules were used to form the composite layers. Single, double, and triple-layer photoelectrodes were constructed with pure TiO2 (control measurements) as well as with a TiO2/diatom frustule composite. The electrodes were prepared using TiO2 nanoparticles of two sizes (13 and 21 nm) and were analyzed using UV visible absorption and XRD spectra. The morphology of frustules and electrodes were analyzed using scanning electron microscopy. The performance for each photoanode configuration was measured by assembling photoelectrochemical solar cells fabricated with a Pt counter electrode and a gel polymer electrolyte that excludes volatile solvents. The efficiency of the control cell is 3.37%. After replacing the topmost TiO2 layer with a TiO2/diatom frustule composite layer, efficiency increases to 6.78%. This is an impressive efficiency enhancement of 101%. The short circuit current density of frustule-incorporated threelayer cells is 18.1 mA cm-1 while for the control cell it is 8.98 mA cm-1. The enhanced efficiency of cells made with TiO2/diatom frustule composite electrodes and a polyethylene oxide-based gel polymer electrolyte can be attributed to the improved light absorption by the photoanode due to optical scattering and light-trapping effects caused by the presence of diatom frustules. Frustules also can assist in enhancing dye adsorption by increasing the effective specific surface area of the composite photoelectrode due to their nanoporous structure.
  •  
2.
  • Bandara, Tmwj, et al. (author)
  • Efficiency enhancement and chrono-photoelectron generation in dye-sensitized solar cells based on spin-coated TiO2 nanoparticle multilayer photoanodes and a ternary iodide gel polymer electrolyte
  • 2023
  • In: Journal of Materials Science-Materials in Electronics. - 0957-4522. ; 34:28
  • Journal article (peer-reviewed)abstract
    • The effect of the thickness of a multilayer TiO2 photoanode on the performance of a dye-sensitized solar cell (DSC) made with a polyethylene oxide-based gel polymer electrolyte containing ternary iodides and performance enhancer 4-tert-butylpyridine is studied. Multilayer photoanodes consisting of up to seven layers of TiO2 nano-particles (13 nm and 21 nm) are prepared by spin coating of successive layers. XRD results confirm the predominant presence of the anatase phase of TiO2 in the multilayer structure after sintering. The SEM images reveal the formation of a single TiO2 film upon sintering due to merging of individually deposited layers. The photocurrent density (J(SC)) and the efficiency increase with the number of TiO2 layers exhibiting the maximum efficiency and J(SC) of 5.5% and 12.5 mA cm(-2), respectively, for the 5-layered electrode of total thickness 4.0 mu m with a 9.66 x 10(-8) mol cm(-2) surface dye concentration. The present study introduces a method of determining the rate of effective photoelectron generation and the average time gap between two successive photon absorptions where the respective results are 1.34 molecule(-1) s(-1) and 0.74 s for the most efficient cell studied in this work.
  •  
3.
  • Bandara, Tmwj, et al. (author)
  • Novel photo-voltaic device based on Bi1-xLaxFeO3 perovskite films with higher efficiency
  • 2019
  • In: Journal of Materials Science-Materials in Electronics. - : Springer Science and Business Media LLC. - 0957-4522 .- 1573-482X. ; 30:2, s. 1654-1662
  • Journal article (peer-reviewed)abstract
    • Photovoltaic cells using polycrystalline La substituted bismuth iron oxide, Bi1-xLaxFeO3, (0.1x0.4), films as the light harvesting component were investigated in this work. A novel cell set-up utilizing a double layered TiO2 film as top contact and a thin layer of quasi-solid polymer electrolyte as back contact was used and a significant enhancement in cell efficiency was observed for assemblies based on x0.2 samples, coincident with a structural transition of Bi1-xLaxFeO3 from ferroelectric to non-ferroelectric. The power conversion efficiency of the PV device was 0.13% for the cell with x=0.2at 1 sun irradiation. The short circuit current density for this La composition was 0.35mAcm(-2). A hysteretic behaviour was observed for higher La compositions when the scanning is from open-circuit (OP) to short-circuit (SC) which may be attributed to polarization effects. The results at x0.2 show an improved performance with respect to BiFeO3 based systems, suggesting the stabilization of the non-ferroelectric crystal structure leads either to a more efficient separation of photo-generated electron-hole pairs and/or enhanced charge transport. The findings represent a step towards the realisation of facile to fabricate, inorganic solid state photovoltaic devices.
  •  
4.
  • Shah, S., et al. (author)
  • Plasmonic effects of quantum size metal nanoparticles on dye-sensitized solar cell
  • 2017
  • In: Optical Materials Express. - : The Optical Society. - 2159-3930. ; 7:6, s. 2069-2083
  • Journal article (peer-reviewed)abstract
    • Gel polymer electrolytes (GPEs) based on poly(ethylene oxide) (PEO) and phthaloyl chitosan (PhCh) for dye-sensitized solar cells (DSSCs) have been synthesized and characterized. The GPEs have been prepared using different weight fractions of PEO and PhCh that have been added to a fixed composition solution of tetrapropylammonium iodide (TPAI), dimethylformamide (DMF) and iodine (I-2) crystals. The ionic conductivity behavior of prepared GPEs was studied using impedance spectroscopy. The sample having 70 wt.% PEO and 30 wt.% PhCh showed the highest ionic conductivity of 7.36 mS cm(-1) at room temperature. The photoanode of the DSSC consists of two TiO2 layers. The first or compact layer has a thickness of similar to 5 mu m and the TiO2 nanoparticles have an average size of 14 nm. The second layer of TiO2 nanoparticles has an average size of 21 nm. In order to adsorb dye molecules, the TiO2 photoanodes were soaked in anthocyanin and ruthenium 535 (N3) dye solutions. The GPE has been deposited between the dye/ TiO2 photoanode and platinum (Pt) counter electrode in a sandwich-like structure. Results showed that the fabricated DSSC with an electrolyte containing 70 wt.% PEO: 30 wt.% PhCh exhibited the highest efficiency for both anthocyanin and N3 dyes and the efficiency and ionic conductivity trend versus PEO content are similar. On addition of different amounts of Ag nanoparticles (0, 10, 20, 30, 40 mu L), with average size of 10 nm to the second TiO2 layer, the performance of DSSCs with anthocyanin sensitizer and N3 dye improved. The cell with anthocyanin/(TiO2 + 10 mu L Ag nanoparticles) showed a 21%, 17.2% and 39.6% increase in short circuit current density (J(sc)), fill factor (FF), and light to electricity conversion efficiency (.) respectively compared to the cell without Ag nanoparticle. The DSSC fabricated with TiO2 photoanode containing 20 mu L Ag nanoparticles soaked in N3 dye exhibits Jsc, FF, and. of 15.24 mA cm(-2), 57% and 5.21% respectively. The incorporation of Ag nanoparticles has resulted in a 17% and 13% increase in Jsc, and., respectively, for N3 based cells. This performance enhancement with the addition of Ag nanoparticles can be attributed to improvement of light scattering and charge transport as a result of plasmonic resonance. (C) 2017 Optical Society of America
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view