SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Baran Marszak Fanny) "

Search: WFRF:(Baran Marszak Fanny)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Baliakas, Panagiotis, 1977-, et al. (author)
  • Cytogenetic complexity in chronic lymphocytic leukemia : definitions, associations, and clinical impact
  • 2019
  • In: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 133:11, s. 1205-1216
  • Journal article (peer-reviewed)abstract
    • Recent evidence suggests that complex karyotype (CK) defined by the presence of >= 3 chromosomal aberrations (structural and/or numerical) identified by using chromosome-banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges toward the routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with >= 5 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcomes, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and/or TP53 mutations [TP53abs]), and the expression of somatically hypermutated (M-CLL) or unmutated immunoglobulin heavy variable genes. Thus, they contrasted with CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and 112,119 displayed an exceptionally indolent profile. Building upon CK, TP53abs, and immunoglobulin heavy variable gene somatic hyper-mutation status, we propose a novel hierarchical model in which patients with high-CK exhibit the worst prognosis, whereas those with mutated CLL lacking CK or TP53abs, as well as CK with 112,119, show the longest overall survival. Thus, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with >= 5 chromosomal aberrations emerges as prognostically adverse, independent of other biomarkers. Prospective clinical validation is warranted before ultimately incorporating high-CK in risk stratification of CLL.
  •  
2.
  • Lazarian, Gregory, et al. (author)
  • The Broad Spectrum of TP53 Mutations in CLL : Evidence of Multiclonality and Novel Mutation Hotspots
  • 2023
  • In: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 2023
  • Journal article (peer-reviewed)abstract
    • TP53 aberrations are a major predictive factor of resistance to chemoimmunotherapy in chronic lymphocytic leukemia (CLL), and an assessment of them before each line of treatment is required for theranostic stratification. Acquisition of subclonal TP53 abnormalities underlies the evolution of CLL. To better characterize the distribution, combination, and impact of TP53 variants in CLL, 1,056 TP53 variants collected from 683 patients included in a multicenter collaborative study in France were analyzed and compared to UMD_CLL, a dataset built from published articles collectively providing 5,173 TP53 variants detected in 3,808 patients. Our analysis confirmed the presence of several CLL-specific hotspot mutations, including a two-base pair deletion in codon 209 and a missense variant at codon 234, the latter being associated with alkylating treatment. Our analysis also identified a novel CLL-specific variant in the splice acceptor signal of intron 6 leading to the use of a cryptic splice site, similarly utilized by TP53 to generate p53psi, a naturally truncated p53 isoform localized in the mitochondria. Examination of both UMD_CLL and several recently released large-scale genomic analyses of CLL patients confirmed that this splice variant is highly enriched in this disease when compared to other cancer types. Using a TP53-specific single-nucleotide polymorphism, we also confirmed that copy-neutral loss of heterozygosity is frequent in CLL. This event can lead to misinterpretation of TP53 status. Unlike other cancers, CLL displayed a high proportion of patients harboring multiple TP53 variants. Using both in silico analysis and single molecule smart sequencing, we demonstrated the coexistence of distinct subclones harboring mutations on distinct alleles. In summary, our study provides a detailed TP53 mutational architecture in CLL and gives insights into how treatments may shape the genetic landscape of CLL patients.
  •  
3.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view