SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Barcos Munoz L.) "

Search: WFRF:(Barcos Munoz L.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ricci, C., et al. (author)
  • A hard X-ray view of luminous and ultra-luminous infrared galaxies in GOALS - I. AGN obscuration along the merger sequence
  • 2021
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:4, s. 5935-5950
  • Journal article (peer-reviewed)abstract
    • The merger of two or more galaxies can enhance the inflow of material from galactic scales into the close environments of active galactic nuclei (AGNs), obscuring and feeding the supermassive black hole (SMBH). Both recent simulations and observations of AGN in mergers have confirmed that mergers are related to strong nuclear obscuration. However, it is still unclear how AGN obscuration evolves in the last phases of the merger process. We study a sample of 60 luminous and ultra-luminous IR galaxies (U/LIRGs) from the GOALS sample observed by NuSTAR. We find that the fraction of AGNs that are Compton thick (CT;N-H >= 10(24)cm(-2) ) peaks at at a late merger stage, prior to coalescence, when the nuclei have projected separations (d(sep)) of 0.4-6 kpc. A similar peak is also observed in the median N-H [[(1.6 +/- 0.5) x 10(24) cm(-2)].]. The vast majority (85(-9)(+7) per cent)) of the AGNs in the final merger stages (d(sep) less than or similar to 10 kpc) are heavily obscured (N-H = 10(23) cm(-2)), and the median N-H of the accreting SMBHs in our sample is systematically higher than that of local hard X-ray-selected AGN, regardless of the merger stage. This implies that these objects have very obscured nuclear environments, with the gas almost completely covering the AGN in late mergers. CT AGNs tend to have systematically higher absorption-corrected X-ray luminosities than less obscured sources. This could either be due to an evolutionary effect, with more obscured sources accreting more rapidly because they have more gas available in their surroundings, or to a selection bias. The latter scenario would imply that we are still missing a large fraction of heavily obscured, lower luminosity (L2-10 less than or similar to 10(43) erg s(-1)) AGNs in U/LIRGs.
  •  
2.
  • Herrero-Illana, R., et al. (author)
  • Molecular gas and dust properties of galaxies from the Great Observatories All-sky LIRG Survey
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Journal article (peer-reviewed)abstract
    • We present IRAM-30 m Telescope (CO)-C-12 and (CO)-C-13 observations of a sample of 55 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in the local universe. This sample is a subset of the Great Observatory All-Sky LIRG Survey (GOALS), for which we use ancillary multi-wavelength data to better understand their interstellar medium and star formation properties. Fifty-three (96%) of the galaxies are detected in (CO)-C-12, and 29 (52%) are also detected in (CO)-C-13 above a 3 sigma level. The median full width at zero intensity (FWZI) velocity of the CO line emission is 661 km s(-1), and similar to 54% of the galaxies show a multi-peak CO profile. Herschel photometric data is used to construct the far-IR spectral energy distribution of each galaxy, which are fit with a modified blackbody model that allows us to derive dust temperatures and masses, and infrared luminosities. We make the assumption that the gas-to-dust mass ratio of (U)LIRGs is comparable to local spiral galaxies with a similar stellar mass (i.e., gas/dust of mergers is comparable to their progenitors) to derive a CO-to-H-2 conversion factor of = 1.8(-0.8)(+1.3) M-circle dot (K km s(-1) pc(2))(-1); such a value is comparable to that derived for (U)LIRGs based on dynamical mass arguments. We derive gas depletion times of 400 600 Myr for the (U)LIRGs, compared to the 1.3 Gyr for local spiral galaxies. Finally, we re-examine the relationship between the (CO)-C-12/(CO)-C-13 ratio and dust temperature, confirming a transition to elevated ratios in warmer systems.
  •  
3.
  • Privon, G., et al. (author)
  • EXCITATION MECHANISMS FOR HCN(1-0) AND HCO+ (1-0) IN GALAXIES FROM THE GREAT OBSERVATORIES ALL-SKY LIRG SURVEY
  • 2015
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 814:1
  • Journal article (peer-reviewed)abstract
    • We present new Institut de Radioastronomie Millimetrique (TRAM) 30 m spectroscopic observations of the similar to 88 GHz band, including emission from the CCH (N = 1 -> 0) multiplet, HCN (J = 1 -> 0), HCO (J = 1 -> 0), and HNC (J = 1 -> 0), for a sample of 58 local luminous and ultraluminous infrared galaxies from the Great Observatories All-sky LIRG Survey (GOALS). By combining our new TRAM data with literature data and Spitzer /IRS spectroscopy, we study the correspondence between these putative tracers of dense gas and the relative contribution of active galactic nuclei (AGNs) and star formation to the mid-infrared luminosity of each system. We find the HCN (1-0) emission to be enhanced in AGN-dominated systems (L'(HCN(1 0))/ L'(HCO+(1-o))) = 1.84), compared to composite and starburst-dominated systems (L'HCN(1413/(1-0)) = 1.14, and 0.88, respectively). However, some composite and starburst systems have LH/ CN (1 0) /LH/ CO (1 0) ratios comparable to those of AGNs, indicating that enhanced HCN emission is not uniquely associated with energetically dominant AGNs. After removing AGN-dominated systems from the sample, we find a linear relationship (within the uncertainties) between logio(L'(HCN(1-0))) and log(10)(LIR), consistent with most previous findings. Lc N(1 0) /LIR, typically interpreted as the dense-gas depletion time, appears to have no systematic trend with LIR for our sample of luminous and ultraluminous infrared galaxies, and has significant scatter. The galaxyintegrated L'(HCN(1-0)) and L'(HCO+(1-0)) emission do not appear to have a simple interpretation in terms of the AGN dominance or the star formation rate, and are likely determined by multiple processes, including density and radiative effects.
  •  
4.
  • Varenius, Eskil, 1986, et al. (author)
  • Subarcsecond international LOFAR radio images of Arp 220 at 150 MHz: A kpc-scale star forming disk surrounding nuclei with shocked outflows
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593, s. A86-
  • Journal article (peer-reviewed)abstract
    • Context. Arp 220 is the prototypical ultra luminous infrared galaxy (ULIRG). Despite extensive studies, the structure at MHz-frequencies has remained unknown because of limits in spatial resolution.Aims: This work aims to constrain the flux and shape of radio emission from Arp 220 at MHz frequencies.Methods: We analyse new observations with the International Low Frequency Array (LOFAR) telescope, and archival data from the Multi-Element Radio Linked Interferometer Network (MERLIN) and the Karl G. Jansky Very Large Array (VLA). We model the spatially resolved radio spectrum of Arp 220 from 150 MHz to 33 GHz.Results: We present an image of Arp 220 at 150 MHz with resolution 0.̋65 × 0.̋35, sensitivity 0.15 mJy beam-1, and integrated flux density 394 ± 59 mJy. More than 80% of the detected flux comes from extended (6''≈ 2.2 kpc) steep spectrum (α = -0.7) emission, likely from star formation in the molecular disk surrounding the two nuclei. We find elongated features extending 0.3'' (110 pc) and 0.9'' (330 pc) from the eastern and western nucleus respectively, which we interpret as evidence for outflows. The extent of radio emission requires acceleration of cosmic rays far outside the nuclei. We find that a simple three component model can explain most of the observed radio spectrum of the galaxy. When accounting for absorption at 1.4 GHz, Arp 220 follows the FIR/radio correlation with q = 2.36, and we estimate a star formation rate of 220 M⊙ yr-1. We derive thermal fractions at 1 GHz of less than 1% for the nuclei, which indicates that a major part of the UV-photons are absorbed by dust.Conclusions: International LOFAR observations shows great promise to detect steep spectrum outflows and probe regions of thermal absorption. However, in LIRGs the emission detected at 150 MHz does not necessarily come from the main regions of star formation. This implies that high spatial resolution is crucial for accurate estimates of star formation rates for such galaxies at 150 MHz.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view