SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Basso Thiago Olitta) "

Search: WFRF:(Basso Thiago Olitta)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alder-Rangel, Alene, et al. (author)
  • The Third International Symposium on Fungal Stress – ISFUS
  • 2020
  • In: Fungal Biology. - : Elsevier BV. - 1878-6146. ; 124:5, s. 235-252
  • Journal article (peer-reviewed)abstract
    • Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.
  •  
2.
  • Eliodorio, Kevy Pontes, et al. (author)
  • Blocking mitophagy does not significantly improve fuel ethanol production in bioethanol yeast Saccharomyces cerevisiae
  • 2022
  • In: Applied and Environmental Microbiology. - : American Society for Microbiology. - 1098-5336 .- 0099-2240. ; 88:5
  • Journal article (peer-reviewed)abstract
    • Ethanolic fermentation is frequently performed under conditions of low nitrogen. In Saccharomyces cerevisiae, nitrogen limitation induces macroautophagy, including the selective removal of mitochondria, also called mitophagy. Shiroma and co-workers (2014) showed that blocking mitophagy by deletion of the mitophagy specific gene ATG32 increased the fermentation performance during the brewing of Ginjo sake. In this study, we tested if a similar strategy could enhance alcoholic fermentation in the context of fuel ethanol production from sugarcane in Brazilian biorefineries. Conditions that mimic the industrial fermentation process indeed induce Atg32-dependent mitophagy in cells of S. cerevisiae PE-2, a strain frequently used in the industry. However, after blocking mitophagy, no significant differences in CO2 production, final ethanol titres or cell viability were observed after five rounds of ethanol fermentation, cell recycling and acid treatment, as commonly performed in sugarcane biorefineries. To test if S. cerevisiae’s strain background influences this outcome, cultivations were carried out in a synthetic medium with strains PE-2, Ethanol Red (industrial) and BY (laboratory), with and without a functional ATG32 gene, under oxic and oxygen restricted conditions. Despite the clear differences in sugar consumption, cell viability and ethanol titres, among the three strains, we could not observe any significant improvement in fermentation performance related to the blocking of mitophagy. We conclude with caution that results obtained with Ginjo sake yeast is an exception and cannot be extrapolated to other yeast strains and that more research is needed to ascertain the role of autophagic processes during fermentation.
  •  
3.
  • Magalí Bermejo, Pamela, et al. (author)
  • Ethanol yield calculations in biorefineries
  • 2021
  • In: FEMS Yeast Research. - : Oxford University Press (OUP). - 1567-1356 .- 1567-1364. ; 21:8
  • Research review (peer-reviewed)abstract
    • The ethanol yield on sugar during alcoholic fermentation allows for diverse interpretation in academia and industry. There are several different ways to calculate this parameter, which is the most important one in this industrial bioprocess and the one that should be maximized, as reported by Pereira and colleagues (Pereira et al. 2018). On the one hand, the various methods currently employed in industry provide dissimilar results, and recent evidence shows that yield has been consistently overestimated in Brazilian sugarcane biorefineries. On the other hand, in academia, researchers often lack information on all the intricate aspects involved in calculating the ethanol yield in industry. Here, we comment on these two aspects, using fuel ethanol production from sugarcane in Brazilian biorefineries as an example, and taking the work of Pereira et al. (2018) as a starting point. Our work is an attempt to demystify some common beliefs and to foster closer interaction between academic and industrial professionals from the fermentation sector.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view