SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Baumgartner Johanna) "

Search: WFRF:(Baumgartner Johanna)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Baumgartner, Johanna, et al. (author)
  • Switchable presentation of cytokines on electroactive polypyrrole surfaces for hematopoietic stem and progenitor cells
  • 2018
  • In: Journal of Materials Chemistry B. - Cambridge : Royal Society of Chemistry. - 2050-750X .- 2050-7518. ; 6:28, s. 4665-4675
  • Journal article (peer-reviewed)abstract
    • Hematopoietic stem cells are used in transplantations for patients with hematologic malignancies. Scarce sources require efficient strategies of expansion, including polymeric biomaterials mimicking architectures of bone marrow tissue. Tissue microenvironment and mode of cytokine presentation strongly influence cell fate. Although several cytokines with different functions as soluble or membrane-bound mediators have already been identified, their precise roles have not yet been clarified. A need exists for in vitro systems that mimic the in vivo situation to enable such studies. One way is to establish surfaces mimicking physiological presentation using protein-immobilization onto polymer films. However these films merely provide a static presentation of the immobilized proteins. It would be advantageous to also dynamically change protein presentation and functionality to better reflect the in vivo conditions. The electroactive polymer polypyrrole shows excellent biocompatibility and electrochemically alters its surface properties, becoming an interesting choice for such setups. Here, we present an in vitro system for switchable presentation of membrane-bound cytokines. We use interleukin IL-3, known to affect hematopoiesis, and show that when immobilized on polypyrrole films, IL-3 is bioavailable for the bone marrow-derived FDC-P1 progenitor cell line. Moreover, IL-3 presentation can be successfully altered by changing the redox state of the film, in turn influencing FDC-P1 cell viability. This novel in vitro system provides a valuable tool for stimuli-responsive switchable protein presentation allowing the dissection of relevant mediators in stem and progenitor cell behavior.
  •  
2.
  • Lehtipalo, Katrianne, et al. (author)
  • Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
  • 2018
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 4:12
  • Journal article (peer-reviewed)abstract
    • A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOx suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.
  •  
3.
  • Stojkovic, Stefan, et al. (author)
  • IL-33 stimulates the release of procoagulant microvesicles from human monocytes and differentially increases tissue factor in human monocyte subsets
  • 2017
  • In: Thrombosis and Haemostasis. - : SCHATTAUER GMBH-VERLAG MEDIZIN NATURWISSENSCHAFTEN. - 0340-6245 .- 2567-689X. ; 117:7, s. 1379-1390
  • Journal article (peer-reviewed)abstract
    • Monocytes and monocyte-derived microvesicles (MVs) are the main source of circulating tissue factor (TF). Increased monocyte TF expression and increased circulating levels of procoagulant MVs contribute to the formation of a prothrombotic state in patients with cardiovascular disease. Interleukin (IL)-33 is a pro-inflammatory cytokine involved in atherosclerosis and other inflammatory diseases, but its role in regulating thrombosis is still unclear. The aim of the present study was to investigate the effects of IL-33 on the procoagulant properties of human monocytes and monocyte-derived MVs. IL-33 induced a time- and concentration-dependent increase of monocyte TF mRNA and protein levels via binding to the ST2-receptor and activation of the NF-kappa B-pathway. The IL-33 treated monocytes also released CD14+TF+ MVs and IL-33 was found to increase the TF activity of both the isolated monocytes and monocyte-derived MVs. The monocytes were classified into subsets according to their CD14 and CD16 expression. Intermediate monocytes (IM) showed the highest ST2 receptor expression, followed by non-classical monocytes (NCM), and classical monocytes (CM). IL-33 induced a significant increase of TF only in the IM (p<0.01), with a tendency in NCM (p=0.06), but no increase was observed in CM. Finally, plasma levels of IL-33 were positively correlated with CD14+TF+ MVs in patients undergoing carotid endarterectomy (r=0.480; p=0.032; n=20). We hereby provide novel evidence that the proinflammatory cytokine IL-33 induces differential TF expression and activity in monocyte subsets, as well as the release of procoagulant MVs. In this manner, IL-33 may contribute to the formation of a prothrombotic state characteristic for cardiovascular disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view