SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Beer Ambros) "

Search: WFRF:(Beer Ambros)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Leuzy, Antoine, et al. (author)
  • Pittsburgh compound B imaging and cerebrospinal fluid amyloid-β in a multicentre European memory clinic study.
  • 2016
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 139:Pt 9, s. 2540-53
  • Journal article (peer-reviewed)abstract
    • The aim of this study was to assess the agreement between data on cerebral amyloidosis, derived using Pittsburgh compound B positron emission tomography and (i) multi-laboratory INNOTEST enzyme linked immunosorbent assay derived cerebrospinal fluid concentrations of amyloid-β42; (ii) centrally measured cerebrospinal fluid amyloid-β42 using a Meso Scale Discovery enzyme linked immunosorbent assay; and (iii) cerebrospinal fluid amyloid-β42 centrally measured using an antibody-independent mass spectrometry-based reference method. Moreover, we examined the hypothesis that discordance between amyloid biomarker measurements may be due to interindividual differences in total amyloid-β production, by using the ratio of amyloid-β42 to amyloid-β40 Our study population consisted of 243 subjects from seven centres belonging to the Biomarkers for Alzheimer's and Parkinson's Disease Initiative, and included subjects with normal cognition and patients with mild cognitive impairment, Alzheimer's disease dementia, frontotemporal dementia, and vascular dementia. All had Pittsburgh compound B positron emission tomography data, cerebrospinal fluid INNOTEST amyloid-β42 values, and cerebrospinal fluid samples available for reanalysis. Cerebrospinal fluid samples were reanalysed (amyloid-β42 and amyloid-β40) using Meso Scale Discovery electrochemiluminescence enzyme linked immunosorbent assay technology, and a novel, antibody-independent, mass spectrometry reference method. Pittsburgh compound B standardized uptake value ratio results were scaled using the Centiloid method. Concordance between Meso Scale Discovery/mass spectrometry reference measurement procedure findings and Pittsburgh compound B was high in subjects with mild cognitive impairment and Alzheimer's disease, while more variable results were observed for cognitively normal and non-Alzheimer's disease groups. Agreement between Pittsburgh compound B classification and Meso Scale Discovery/mass spectrometry reference measurement procedure findings was further improved when using amyloid-β42/40 Agreement between Pittsburgh compound B visual ratings and Centiloids was near complete. Despite improved agreement between Pittsburgh compound B and centrally analysed cerebrospinal fluid, a minority of subjects showed discordant findings. While future studies are needed, our results suggest that amyloid biomarker results may not be interchangeable in some individuals.
  •  
2.
  • Vasić, Valentina, et al. (author)
  • A PBPK model for PRRT with [177Lu]Lu-DOTA-TATE : Comparison of model implementations in SAAM II and MATLAB/SimBiology
  • 2024
  • In: Physica Medica. - 1120-1797. ; 119
  • Journal article (peer-reviewed)abstract
    • Physiologically based pharmacokinetic (PBPK) models offer the ability to simulate and predict the biodistribution of radiopharmaceuticals and have the potential to enable individualised treatment planning in molecular radiotherapy. The objective of this study was to develop and implement a whole-body compartmental PBPK model for peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-DOTA-TATE in SimBiology to allow for more complex analyses. The correctness of the model implementation was ensured by comparing its outputs, such as the time-integrated activity (TIA), with those of a PBPK model implemented in SAAM II software. Methods: A combined PBPK model for [68Ga]Ga-DOTA-TATE and [177Lu]Lu-DOTA-TATE was developed and implemented in both SAAM II and SimBiology. A retrospective analysis of 12 patients with metastatic neuroendocrine tumours (NETs) was conducted. First, time-activity curves (TACs) and TIAs from the two software were calculated and compared for identical parameter values. Second, pharmacokinetic parameters were fitted to activity concentrations, analysed and compared. Results: The PBPK model implemented in SimBiology produced TIA results comparable to those generated by the model implemented in SAAM II, with a relative deviation of less than 0.5% when using the same input parameters. The relative deviation of the fitted TIAs was less than 5% when model parameter values were fitted to the measured activity concentrations. Conclusion: The proposed PBPK model implemented in SimBiology can be used for dosimetry in radioligand therapy and TIA prediction. Its outputs are similar to those generated by the PBPK model implemented in SAAM II, confirming the correctness of the model implementation in SimBiology.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view