SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Benedikz Eirikur) "

Search: WFRF:(Benedikz Eirikur)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Agholme, Lotta, et al. (author)
  • Amyloid-β Secretion, Generation, and Lysosomal Sequestration in Response to Proteasome Inhibition : Involvement of Autophagy
  • 2012
  • In: Journal of Alzheimer's Disease. - : I O S Press. - 1387-2877 .- 1875-8908. ; 31:2, s. 343-358
  • Journal article (peer-reviewed)abstract
    • The proteasome is important for degradation of worn out and misfolded proteins. Decreased proteasome activity has been implicated in Alzheimer's disease (AD). Proteasome inhibition induces autophagy, but it is still unknown whether autophagy is beneficial or deleterious to AD neurons, as the autophagosome has been suggested as a site of amyloid-β (Aβ) generation. In this study, we investigated the effect of proteasome inhibition on Aβ accumulation and secretion, as well as the processing of amyloid-β protein precursor (AβPP) in AβPPSwe transfected SH-SY5Y neuroblastoma cells. We show that proteasome inhibition resulted in autophagy-dependent accumulation of Aβ in lysosomes, and increased levels of intracellular and secreted Aβ. The enhanced levels of Aβ could not be explained by increased amounts of AβPP. Instead, reduced degradation of the C-terminal fragment of AβPP (C99) by the proteasome makes C99 available for γ-secretase cleavage, leading to Aβ generation. Inhibition of autophagy after proteasome inhibition led to reduced levels of intracellular, but not secreted Aβ, and tended to further increase the C99 to AβPP ratio, supporting involvement of the autophagosome in Aβ generation. Furthermore, proteasome inhibition caused a reduction in cellular viability, which was reverted by inhibition of autophagy. Dysfunction of the proteasome could cause lysosomal accumulation of Aβ, as well as increased generation and secretion of Aβ, which is partly facilitated by autophagy. As a decrease in cellular viability was also detected, it is possible that upregulation of autophagy is an unsuccessful rescue mechanism, which instead of being protective, contributes to AD pathogenesis.
  •  
2.
  • Corell, Mikael, et al. (author)
  • GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination
  • 2015
  • In: Journal of Neuroscience Research. - : Wiley. - 0360-4012 .- 1097-4547. ; 93:2, s. 285-295
  • Journal article (peer-reviewed)abstract
    • The γ-aminobutyric acid (GABA) type B receptor has been implicated in glial cell development in the peripheral nervous system (PNS), although the exact function of GABA signaling is not known. To investigate GABA and its B receptor in PNS development and degeneration, we studied the expression of the GABAB receptor, GABA, and glutamic acid decarboxylase GAD65/67 in both development and injury in fetal dissociated dorsal root ganglia (DRG) cell cultures and in the rat sciatic nerve. We found that GABA, GAD65/67, and the GABAB receptor were expressed in premyelinating and nonmyelinating Schwann cells throughout development and after injury. A small population of myelinated sensory fibers displayed all of these molecules at the node of Ranvier, indicating a role in axon-glia communication. Functional studies using GABAB receptor agonists and antagonists were performed in fetal DRG primary cultures to study the function of this receptor during development. The results show that GABA, via its B receptor, is involved in the myelination process but not in Schwann cell proliferation. The data from adult nerves suggest additional roles in axon-glia communication after injury.
  •  
3.
  •  
4.
  • Fex Svenningsen, Åsa, et al. (author)
  • Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1
  • 2017
  • In: Cellular and Molecular Life Sciences (CMLS). - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 24, s. 4561-4572
  • Journal article (peer-reviewed)abstract
    • Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cellular level. It is upregulated in neurodegenerative diseases and cancer although its function is far from clear. Here, we report the finding of a new binding partner to MIF, the serine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the function of the binding between MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes and that the functional binding has the ability to modulate astrocytic activities important in development and disease of the CNS.
  •  
5.
  • Hjæresen, Simone, et al. (author)
  • High temperature requirement A1 and macrophage migration inhibitory factor in the cerebrospinal fluid; a potential marker of conversion from relapsing-remitting to secondary progressive multiple sclerosis
  • 2024
  • In: Journal of the Neurological Sciences. - 0022-510X .- 1878-5883. ; 457
  • Journal article (peer-reviewed)abstract
    • Background: Predictive and prognostic biomarkers for multiple sclerosis (MS) remain a significant gap in MS diagnosis and treatment monitoring. Currently, there are no timely markers to diagnose the transition to secondary progressive MS (SPMS). Objective: This study aims to evaluate the discriminatory potential of the High temperature requirement serine protease (HTRA1)/Macrophage migration inhibitory factor (MIF) cerebrospinal fluid (CSF) ratio in distinguishing relapsing-remitting (RRMS) patients from SPMS patients. Methods: The MIF and HTRA1 CSF levels were determined using ELISA in healthy controls (n = 23), RRMS patients before (n = 22) and after 1 year of dimethyl fumarate treatment (n = 11), as well as in SPMS patients before (n = 11) and after 2 years of mitoxantrone treatment (n = 7). The ability of the HTRA1/MIF ratio to discriminate the different groups was determined using receiver operating curve (ROC) analyses. Results: The ratio was significantly increased in treatment naïve RRMS patients while decreased again in SPMS patients at baseline. Systemic administrated disease modifying treatment (DMT) only significantly affected the ratio in RRMS patients. ROC analysis demonstrated that the ratio could discriminate treatment naïve RRMS patients from SPMS patients with 91% sensitivity and 100% specificity. Conclusion: The HTRA1/MIF ratio is a strong candidate as a MS biomarker for SPMS conversion.
  •  
6.
  • Zheng, Lin, et al. (author)
  • Macroautophagy-generated increase of lysosomal amyloid beta-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells
  • 2011
  • In: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 7:12, s. 1528-1545
  • Journal article (peer-reviewed)abstract
    • Increasing evidence suggests the toxicity of intracellular amyloid beta-protein (A beta) to neurons, as well as the involvement of oxidative stress in Alzheimer disease (AD). Here we show that normobaric hyperoxia (exposure of cells to 400/c oxygen for five days, and consequent activation of macroautophagy and accumulation of A beta within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as A beta monomers and oligomers, (2) increased reactive oxygen species production, and (3) enhanced apoptosis. Oxidant-induced apoptosis positively correlated with cellular A beta production, being the highest in cells that were stably transfected with APP Swedish KM670/671NL double mutation. Inhibition of v-secretase, prior and/or in parallel to hyperoxia, suggested that the increase of lysosomal A beta resulted mainly from its autophagic uptake, but also from APP processing within autophagic vacuoles. The oxidative stress-mediated effects were prevented by macroautophagy inhibition using 3-methyladenine or ATG5 downregulation. Our results suggest that upregulation of macroautophagy and resulting lysosomal A beta accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide additional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration.
  •  
7.
  • Zheng, Lin, et al. (author)
  • Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells
  • 2011
  • In: Autophagy. - : Landes Bioscience. - 1554-8627 .- 1554-8635. ; 7:12, s. 1528-1545
  • Journal article (peer-reviewed)abstract
    • Increasing evidence suggests the toxicity of intracellular amyloid β-protein (Aβ) to neurons, as well as the involvement of oxidative stress in Alzheimer disease (AD). Here we show that normobaric hyperoxia (exposure of cells to 40% oxygen for five days, and consequent activation of macroautophagy and accumulation of Aβ within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as Aβ monomers and oligomers, (2) increased reactive oxygen species production, and (3) enhanced apoptosis. Oxidant-induced apoptosis positively correlated with cellular Aβ production, being the highest in cells that were stably transfected with APP Swedish KM670/671NL double mutation. Inhibition of γ-secretase, prior and/or in parallel to hyperoxia, suggested that the increase of lysosomal Aβ resulted mainly from its autophagic uptake, but also from APP processing within autophagic vacuoles. The oxidative stress-mediated effects were prevented by macroautophagy inhibition using 3-methyladenine or ATG5 downregulation. Our results suggest that upregulation of macroautophagy and resulting lysosomal Aβ accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide aditional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration.
  •  
8.
  • Zheng, Lin, et al. (author)
  • Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis
  • 2009
  • In: Free Radical Biology & Medicine. - : Elsevier BV. - 0891-5849 .- 1873-4596. ; 46:3, s. 422-429
  • Journal article (peer-reviewed)abstract
    • There is increasing evidence for the toxicity of intracellular amyloid beta-protein (A beta) to neurons and the involvement of lysosomes in this process in Alzheimer disease (AD). We have recently shown that oxidative stress, a recognized determinant of AD. enhances macroautophagy and leads to intralysosomal accumulation of A beta in Cultured neuroblastoma cells. We hypothesized that oxidative stress promotes AD by stimulating macroautophagy of A that further may induce cell death by destabilizing lysosomal membranes. To investigate such possibility, we compared the effects of hyperoxia (40% ambient oxygen) in cultured HEK293 cells that were transfected with an empty vector (Vector), wild-type APP (APPwt), or Swedish mutant APP (APPswe). Exposure to hyperoxia for 5 days increased the number of cells with A beta-containing lysosomes, as well as the number of apoptotic cells, compared to normoxic conditions. The rate of apoptosis in all three cell lines demonstrated dependence on intralysosomal A beta content (Vector
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view