SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ber Isabelle L. E.) "

Search: WFRF:(Ber Isabelle L. E.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nicolas, Aude, et al. (author)
  • Genome-wide Analyses Identify KIF5A as a Novel ALS Gene
  • 2018
  • In: Neuron. - : Cell Press. - 0896-6273 .- 1097-4199. ; 97:6, s. 1268-1283.e6
  • Journal article (peer-reviewed)abstract
    • To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
  •  
2.
  • Ferrari, Raffaele, et al. (author)
  • Frontotemporal dementia and its subtypes: a genome-wide association study.
  • 2014
  • In: Lancet Neurology. - 1474-4465. ; 13:7, s. 686-699
  • Journal article (peer-reviewed)abstract
    • Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder.
  •  
3.
  • Linnemann, Christoph, et al. (author)
  • NfL reliability across laboratories, stage-dependent diagnostic performance and matrix comparability in genetic FTD: a large GENFI study
  • 2024
  • In: JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY. - 0022-3050 .- 1468-330X.
  • Journal article (peer-reviewed)abstract
    • BackgroundBlood neurofilament light chain (NfL) is increasingly considered as a key trial biomarker in genetic frontotemporal dementia (gFTD). We aimed to facilitate the use of NfL in gFTD multicentre trials by testing its (1) reliability across labs; (2) reliability to stratify gFTD disease stages; (3) comparability between blood matrices and (4) stability across recruiting sites.MethodsComparative analysis of blood NfL levels in a large gFTD cohort (GENFI) for (1)-(4), with n=344 samples (n=148 presymptomatic, n=11 converter, n=46 symptomatic subjects, with mutations in C9orf72, GRN or MAPT; and n=139 within-family controls), each measured in three different international labs by Simoa HD-1 analyzer.ResultsNfL revealed an excellent consistency (intraclass correlation coefficient (ICC) 0.964) and high reliability across the three labs (maximal bias (pg/mL) in Bland-Altman analysis: 1.12 +/- 1.20). High concordance of NfL across laboratories was moreover reflected by high areas under the curve for discriminating conversion stage against the (non-converting) presymptomatic stage across all three labs. Serum and plasma NfL were largely comparable (ICC 0.967). The robustness of NfL across 13 recruiting sites was demonstrated by a linear mixed effect model.ConclusionsOur results underline the suitability of blood NfL in gFTD multicentre trials, including cross-lab reliable stratification of the highly trial-relevant conversion stage, matrix comparability and cross-site robustness.
  •  
4.
  • Bussy, Aurélie, et al. (author)
  • Cerebellar and subcortical atrophy contribute to psychiatric symptoms in frontotemporal dementia
  • 2023
  • In: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 44:7, s. 2684-2700
  • Journal article (peer-reviewed)abstract
    • Recent studies have reported early cerebellar and subcortical impact in the disease progression of genetic frontotemporal dementia (FTD) due to microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72). However, the cerebello-subcortical circuitry in FTD has been understudied despite its essential role in cognition and behaviors related to FTD symptomatology. The present study aims to investigate the association between cerebellar and subcortical atrophy, and neuropsychiatric symptoms across genetic mutations. Our study included 983 participants from the Genetic Frontotemporal dementia Initiative including mutation carriers and noncarrier first-degree relatives of known symptomatic carriers. Voxel-wise analysis of the thalamus, striatum, globus pallidus, amygdala, and the cerebellum was performed, and partial least squares analyses (PLS) were used to link morphometry and behavior. In presymptomatic C9orf72 expansion carriers, thalamic atrophy was found compared to noncarriers, suggesting the importance of this structure in FTD prodromes. PLS analyses demonstrated that the cerebello-subcortical circuitry is related to neuropsychiatric symptoms, with significant overlap in brain/behavior patterns, but also specificity for each genetic mutation group. The largest differences were in the cerebellar atrophy (larger extent in C9orf72 expansion group) and more prominent amygdalar volume reduction in the MAPT group. Brain scores in the C9orf72 expansion carriers and MAPT carriers demonstrated covariation patterns concordant with atrophy patterns detectable up to 20 years before expected symptom onset. Overall, these results demonstrated the important role of the subcortical structures in genetic FTD symptom expression, particularly the cerebellum in C9orf72 and the amygdala in MAPT carriers.
  •  
5.
  • Keller, Annika, et al. (author)
  • Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:9, s. 1077-
  • Journal article (peer-reviewed)abstract
    • Calcifications in the basal ganglia are a common incidental finding and are sometimes inherited as an autosomal dominant trait ( idiopathic basal ganglia calcification (IBGC)). Recently, mutations in the PDGFRB gene coding for the platelet-derived growth factor receptor beta (PDGF-R beta) were linked to IBGC. Here we identify six families of different ancestry with nonsense and missense mutations in the gene encoding PDGF-B, the main ligand for PDGF-R beta. We also show that mice carrying hypomorphic Pdgfb alleles develop brain calcifications that show age-related expansion. The occurrence of these calcium depositions depends on the loss of endothelial PDGF-B and correlates with the degree of pericyte and blood-brain barrier deficiency. Thus, our data present a clear link between Pdgfb mutations and brain calcifications in mice, as well as between PDGFB mutations and IBGC in humans.
  •  
6.
  • Sproviero, William, et al. (author)
  • ATXN2 trinucleotide repeat length correlates with risk of ALS
  • 2017
  • In: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 51, s. 178.e1-178.e9
  • Journal article (peer-reviewed)abstract
    • We investigated a CAG trinucleotide repeat expansion in the ATXN2 gene in amyotrophic lateral sclerosis (ALS). Two new case-control studies, a British dataset of 1474 ALS cases and 567 controls, and a Dutch dataset of 1328 ALS cases and 691 controls were analyzed. In addition, to increase power, we systematically searched PubMed for case-control studies published after 1 August 2010 that investigated the association between ATXN2 intermediate repeats and ALS. We conducted a meta-analysis of the new and existing studies for the relative risks of ATXN2 intermediate repeat alleles of between 24 and 34 CAG trinucleotide repeats and ALS. There was an overall increased risk of ALS for those carrying intermediate sized trinucleotide repeat alleles (odds ratio 3.06 [95% confidence interval 2.37-3.94]; p = 6 × 10(-18)), with an exponential relationship between repeat length and ALS risk for alleles of 29-32 repeats (R(2) = 0.91, p = 0.0002). No relationship was seen for repeat length and age of onset or survival. In contrast to trinucleotide repeat diseases, intermediate ATXN2 trinucleotide repeat expansion in ALS does not predict age of onset but does predict disease risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view