SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Beres Nicholas D.) "

Search: WFRF:(Beres Nicholas D.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bosch, Carme, et al. (author)
  • Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean
  • 2014
  • In: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 119:20, s. 11743-11759
  • Journal article (peer-reviewed)abstract
    • The dual carbon isotope signatures and optical properties of carbonaceous aerosols have been investigated simultaneously for the first time in the South Asian outflow during an intensive campaign at the Maldives Climate Observatory on Hanimaadhoo (MCOH) (February and March 2012). As one component of the Cloud Aerosol Radiative Forcing Dynamics Experiment, this paper reports on the sources and the atmospheric processing of elemental carbon (EC) and water-soluble organic carbon (WSOC) as examined by a dual carbon isotope approach. The radiocarbon (C-14) data show that WSOC has a significantly higher biomass/biogenic contribution (865%) compared to EC (594%). The more C-13-enriched signature of MCOH-WSOC (-20.80.7) compared to MCOH-EC (-25.8 +/- 0.3 parts per thousand) and megacity Delhi WSOC (-24.1 +/- 0.9 parts per thousand) suggests that WSOC is significantly more affected by aging during long-range transport than EC. The C-13-C-14 signal suggests that the wintertime WSOC intercepted over the Indian Ocean largely represents aged primary biomass burning aerosols. Since light-absorbing organic carbon aerosols (Brown Carbon (BrC)) have recently been identified as potential contributors to positive radiative forcing, optical properties of WSOC were also investigated. The mass absorption cross section of WSOC (MAC(365)) was 0.5 +/- 0.2 m(2)g(-1) which is lower than what has been observed at near-source sites, indicating a net decrease of WSOC light-absorption character during long-range transport. Near-surface WSOC at MCOH accounted for similar to 1% of the total direct solar absorbance relative to EC, which is lower than the BrC absorption inferred from solar spectral observations of ambient aerosols, suggesting that a significant portion of BrC might be included in the water-insoluble portion of organic aerosols.
  •  
2.
  • Skwark, Marcin J., et al. (author)
  • Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis
  • 2017
  • In: PLOS Genetics. - : PUBLIC LIBRARY SCIENCE. - 1553-7390 .- 1553-7404. ; 13:2
  • Journal article (peer-reviewed)abstract
    • Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein- protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly enhances the future potential of epistasis analysis for systems biology, and can complement genome-wide association studies as a means of formulating hypotheses for targeted experimental work.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view