SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bernard Henry) "

Search: WFRF:(Bernard Henry)

  • Result 1-10 of 28
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Satizabal, Claudia L., et al. (author)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Journal article (peer-reviewed)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
2.
  • Benavides, Raquel, et al. (author)
  • The GenTree Leaf Collection : Inter- and intraspecific leaf variation in seven forest tree species in Europe
  • 2021
  • In: Global Ecology and Biogeography. - : John Wiley & Sons. - 1466-822X .- 1466-8238. ; 30:3, s. 590-597
  • Journal article (peer-reviewed)abstract
    • Motivation Trait variation within species can reveal plastic and/or genetic responses to environmental gradients, and may indicate where local adaptation has occurred. Here, we present a dataset of rangewide variation in leaf traits from seven of the most ecologically and economically important tree species in Europe. Sample collection and trait assessment are embedded in the GenTree project (EU-Horizon 2020), which aims at characterizing the genetic and phenotypic variability of forest tree species to optimize the management and sustainable use of forest genetic resources. Our dataset captures substantial intra- and interspecific leaf phenotypic variability, and provides valuable information for studying the relationship between ecosystem functioning and trait variability of individuals, and the response and resilience of species to environmental changes. Main types of variable contained We chose morphological and chemical characters linked to trade-offs between acquisition and conservation of resources and water use, namely specific leaf area, leaf size, carbon and nitrogen content and their ratio, and the isotopic signature of stable isotope C-13 and N-15 in leaves. Spatial location and grain We surveyed between 18 and 22 populations per species, 141 in total, across Europe. Time period Leaf sampling took place between 2016 and 2017. Major taxa and level of measurement We sampled at least 25 individuals in each population, 3,569 trees in total, and measured traits in 35,755 leaves from seven European tree species, i.e. the conifers Picea abies, Pinus pinaster and Pinus sylvestris, and the broadleaves Betula pendula, Fagus sylvatica, Populus nigra and Quercus petraea. Software format The data files are in ASCII text, tab delimited, not compressed.
  •  
3.
  • Dima, Danai, et al. (author)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • In: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
4.
  • Frangou, Sophia, et al. (author)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • In: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • Journal article (peer-reviewed)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
5.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
6.
  • Wierenga, Lara M., et al. (author)
  • Greater male than female variability in regional brain structure across the lifespan
  • 2022
  • In: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 470-499
  • Journal article (peer-reviewed)abstract
    • For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
  •  
7.
  •  
8.
  • Andres, Juan, et al. (author)
  • Nine questions on energy decomposition analysis
  • 2019
  • In: Journal of Computational Chemistry. - : Wiley. - 0192-8651 .- 1096-987X. ; 40:26, s. 2248-2283
  • Journal article (peer-reviewed)abstract
    • The paper collects the answers of the authors to the following questions: Is the lack of precision in the definition of many chemical concepts one of the reasons for the coexistence of many partition schemes? Does the adoption of a given partition scheme imply a set of more precise definitions of the underlying chemical concepts? How can one use the results of a partition scheme to improve the clarity of definitions of concepts? Are partition schemes subject to scientific Darwinism? If so, what is the influence of a community's sociological pressure in the “natural selection” process? To what extent does/can/should investigated systems influence the choice of a particular partition scheme? Do we need more focused chemical validation of Energy Decomposition Analysis (EDA) methodology and descriptors/terms in general? Is there any interest in developing common benchmarks and test sets for cross-validation of methods? Is it possible to contemplate a unified partition scheme (let us call it the “standard model” of partitioning), that is proper for all applications in chemistry, in the foreseeable future or even in principle? In the end, science is about experiments and the real world. Can one, therefore, use any experiment or experimental data be used to favor one partition scheme over another?
  •  
9.
  • Campbell, Bruce C V, et al. (author)
  • Extending thrombolysis to 4·5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data.
  • 2019
  • In: Lancet (London, England). - 1474-547X. ; 394:10193, s. 139-147
  • Journal article (peer-reviewed)abstract
    • Stroke thrombolysis with alteplase is currently recommended 0-4·5 h after stroke onset. We aimed to determine whether perfusion imaging can identify patients with salvageable brain tissue with symptoms 4·5 h or more from stroke onset or with symptoms on waking who might benefit from thrombolysis.In this systematic review and meta-analysis of individual patient data, we searched PubMed for randomised trials published in English between Jan 1, 2006, and March 1, 2019. We also reviewed the reference list of a previous systematic review of thrombolysis and searched ClinicalTrials.gov for interventional studies of ischaemic stroke. Studies of alteplase versus placebo in patients (aged ≥18 years) with ischaemic stroke treated more than 4·5 h after onset, or with wake-up stroke, who were imaged with perfusion-diffusion MRI or CT perfusion were eligible for inclusion. The primary outcome was excellent functional outcome (modified Rankin Scale [mRS] score 0-1) at 3 months, adjusted for baseline age and clinical severity. Safety outcomes were death and symptomatic intracerebral haemorrhage. We calculated odds ratios, adjusted for baseline age and National Institutes of Health Stroke Scale score, using mixed-effects logistic regression models. This study is registered with PROSPERO, number CRD42019128036.We identified three trials that met eligibility criteria: EXTEND, ECASS4-EXTEND, and EPITHET. Of the 414 patients included in the three trials, 213 (51%) were assigned to receive alteplase and 201 (49%) were assigned to receive placebo. Overall, 211 patients in the alteplase group and 199 patients in the placebo group had mRS assessment data at 3 months and thus were included in the analysis of the primary outcome. 76 (36%) of 211 patients in the alteplase group and 58 (29%) of 199 patients in the placebo group had achieved excellent functional outcome at 3 months (adjusted odds ratio [OR] 1·86, 95% CI 1·15-2·99, p=0·011). Symptomatic intracerebral haemorrhage was more common in the alteplase group than the placebo group (ten [5%] of 213 patients vs one [<1%] of 201 patients in the placebo group; adjusted OR 9·7, 95% CI 1·23-76·55, p=0·031). 29 (14%) of 213 patients in the alteplase group and 18 (9%) of 201 patients in the placebo group died (adjusted OR 1·55, 0·81-2·96, p=0·66).Patients with ischaemic stroke 4·5-9 h from stroke onset or wake-up stroke with salvageable brain tissue who were treated with alteplase achieved better functional outcomes than did patients given placebo. The rate of symptomatic intracerebral haemorrhage was higher with alteplase, but this increase did not negate the overall net benefit of thrombolysis.None.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 28
Type of publication
journal article (27)
conference paper (1)
Type of content
peer-reviewed (28)
Author/Editor
Agartz, Ingrid (8)
Brouwer, Rachel M (8)
Westlye, Lars T (8)
Andreassen, Ole A (8)
de Geus, Eco J. C. (8)
Martin, Nicholas G. (8)
show more...
Boomsma, Dorret I. (8)
Jahanshad, Neda (8)
Wittfeld, Katharina (8)
Brodaty, Henry (8)
de Zubicaray, Greig ... (8)
Ehrlich, Stefan (8)
Fisher, Simon E. (8)
McMahon, Katie L. (8)
Ching, Christopher R ... (7)
Thompson, Paul M (7)
Andersson, Micael (7)
Nyberg, Lars, 1966- (7)
Crespo-Facorro, Bene ... (7)
Tordesillas-Gutierre ... (7)
Stein, Dan J (7)
Sachdev, Perminder S ... (7)
Wright, Margaret J. (7)
Schumann, Gunter (7)
Espeseth, Thomas (7)
Glahn, David C. (7)
Franke, Barbara (6)
van der Meer, Dennis (6)
Groenewold, Nynke A (6)
Medland, Sarah E (6)
Holmes, Avram J. (6)
Heslenfeld, Dirk J. (5)
Djurovic, Srdjan (5)
Doan, Nhat Trung (5)
Meyer-Lindenberg, An ... (5)
Cichon, Sven (5)
Schofield, Peter R (5)
Heinz, Andreas (5)
Le Hellard, Stephani ... (5)
Ames, David (5)
Hottenga, Jouke-Jan (5)
Krum, Henry (5)
Veltman, Dick J (5)
Grabe, Hans J. (5)
Schmaal, Lianne (5)
Schork, Andrew J (5)
Teumer, Alexander (5)
Desrivieres, Sylvane (5)
Armstrong, Nicola J. (5)
Paus, Tomas (5)
show less...
University
Umeå University (12)
Karolinska Institutet (10)
Uppsala University (9)
Lund University (7)
University of Gothenburg (4)
Linköping University (4)
show more...
Swedish University of Agricultural Sciences (2)
Royal Institute of Technology (1)
Stockholm University (1)
Mid Sweden University (1)
Chalmers University of Technology (1)
Linnaeus University (1)
Högskolan Dalarna (1)
show less...
Language
English (28)
Research subject (UKÄ/SCB)
Medical and Health Sciences (19)
Natural sciences (8)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view