SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Besser V.) "

Search: WFRF:(Besser V.)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  • Trainer, P J, et al. (author)
  • Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant.
  • 2000
  • In: The New England journal of medicine. - 0028-4793. ; 342:16, s. 1171-7
  • Journal article (peer-reviewed)abstract
    • Patients with acromegaly are currently treated with surgery, radiation therapy, and drugs to reduce hypersecretion of growth hormone, but the treatments may be ineffective and have adverse effects. Pegvisomant is a genetically engineered growth hormone-receptor antagonist that blocks the action of growth hormone.We conducted a 12-week, randomized, double-blind study of three daily doses of pegvisomant (10 mg, 15 mg, and 20 mg) and placebo, given subcutaneously, in 112 patients with acromegaly.The mean (+/-SD) serum concentration of insulin-like growth factor I (IGF-I) decreased from base line by 4.0+/-16.8 percent in the placebo group, 26.7+/-27.9 percent in the group that received 10 mg of pegvisomant per day, 50.1+/-26.7 percent in the group that received 15 mg of pegvisomant per day, and 62.5+/-21.3 percent in the group that received 20 mg of pegvisomant per day (P<0.001 for the comparison of each pegvisomant group with placebo), and the concentrations became normal in 10 percent, 54 percent, 81 percent, and 89 percent of patients, respectively (P<0.001 for each comparison with placebo). Among patients treated with 15 mg or 20 mg of pegvisomant per day, there were significant decreases in ring size, soft-tissue swelling, the degree of excessive perspiration, and fatigue. The score fortotal symptoms and signs of acromegaly decreased significantly in all groups receiving pegvisomant (P< or =0.05). The incidence of adverse effects was similar in all groups.On the basis of these preliminary results, treatment of patients who have acromegaly with a growth hormone-receptor antagonist results in a reduction in serum IGF-I concentrations and in clinical improvement.
  •  
6.
  •  
7.
  • Chahal, Harvinder S., et al. (author)
  • Brief Report : AIP Mutation in Pituitary Adenomas in the 18th Century and Today
  • 2011
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 364:1, s. 43-50
  • Journal article (peer-reviewed)abstract
    • Gigantism results when a growth hormone-secreting pituitary adenoma is present before epiphyseal fusion. In 1909, when Harvey Cushing examined the skeleton of an Irish patient who lived from 1761 to 1783, *RF 1-3* he noted an enlarged pituitary fossa. We extracted DNA from the patient's teeth and identified a germline mutation in the aryl hydrocarbon-interacting protein gene (AIP). Four contemporary Northern Irish families who presented with gigantism, acromegaly, or prolactinoma have the same mutation and haplotype associated with the mutated gene. Using coalescent theory, we infer that these persons share a common ancestor who lived about 57 to 66 generations earlier.
  •  
8.
  • Fellerhoff-Losch, Barbara, et al. (author)
  • Normal human CD4+ helper T cells express Kv1.1 voltage-gated K+ channels, and selective Kv1.1 block in T cells induces by itself robust TNFα production and secretion and activation of the NFκB non-canonical pathway
  • 2016
  • In: Journal of neural transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 123:3, s. 137-157
  • Journal article (peer-reviewed)abstract
    • TNFα is a very potent and pleiotropic pro-inflammatory cytokine, essential to the immune system for eradicating cancer and microorganisms, and to the nervous system, for brain development and ongoing function. Yet, excess and/or chronic TNFα secretion causes massive tissue damage in autoimmune, inflammatory and neurological diseases and injuries. Therefore, many patients with autoimmune/inflammatory diseases receive anti-TNFα medications. TNFα is secreted primarily by CD4+ T cells, macrophages, monocytes, neutrophils and NK cells, mainly after immune stimulation. Yet, the cause for the pathologically high and chronic TNFα secretion is unknown. Can blocking of a particular ion channel in T cells induce by itself TNFα secretion? Such phenomenon was never revealed or even hypothesized. In this interdisciplinary study we discovered that: (1) normal human T cells express Kv1.1 voltage-gated potassium channel mRNA, and the Kv1.1 membrane-anchored protein channel; (2) Kv1.1 is expressed in most CD4+CD3+ helper T cells (mean CD4+CD3+Kv1.1+ T cells of 7 healthy subjects: 53.09 ± 22.17 %), but not in CD8+CD3+ cytotoxic T cells (mean CD8+CD3+Kv1.1+ T cells: 4.12 ± 3.04 %); (3) electrophysiological whole-cell recordings in normal human T cells revealed Kv currents; (4) Dendrotoxin-K (DTX-K), a highly selective Kv1.1 blocker derived from snake toxin, increases the rate of rise and decay of Kv currents in both resting and activated T cells, without affecting the peak current; (5) DTX-K by itself induces robust TNFα production and secretion by normal human T cells, without elevating IFNγ, IL-4 and IL-10; (6) intact Ca2+ channels are required for DTX-induced TNFα secretion; (7) selective anti-Kv1.1 antibodies also induce by themselves TNFα secretion; (8) DTX-K activates NFκB in normal human T cells via the unique non-canonical-pathway; (9) injection of Kv1.1-blocked human T cells to SCID mice, causes recruitment of resident mouse cells into the liver, alike reported after TNFα injection into the brain. Based on our discoveries we speculate that abnormally blocked Kv1.1 in T cells (and other immune cells?), due to either anti-Kv1.1 autoimmune antibodies, or Kv1.1-blocking toxins alike DTX-K, or Kv1.1-blocking genetic mutations, may be responsible for the chronic/excessive TNFα in autoimmune/inflammatory diseases. Independently, we also hypothesize that selective block of Kv1.1 in CD4+ T cells of patients with cancer or chronic infectious diseases could be therapeutic, since it may: a. augment beneficial secretion and delivery of TNFα to the disease-affected sites; b. induce recruitment and extravasation of curative immune cells and factors; c. improve accessibility of drugs to the brain and few peripheral organs thanks to TNFα-induced increased permeability of organ’s barriers.
  •  
9.
  • van der Lely, A J, et al. (author)
  • Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist.
  • 2001
  • In: Lancet (London, England). - 0140-6736. ; 358:9295, s. 1754-9
  • Journal article (peer-reviewed)abstract
    • Pegvisomant is a new growth hormone receptor antagonist that improves symptoms and normalises insulin-like growth factor-1 (IGF-1) in a high proportion of patients with acromegaly treated for up to 12 weeks. We assessed the effects of pegvisomant in 160 patients with acromegaly treated for an average of 425 days.Treatment efficacy was assessed by measuring changes in tumour volume by magnetic resonance imaging, and serum growth hormone and IGF-1 concentrations in 152 patients who received pegvisomant by daily subcutaneous injection for up to 18 months. The safety analysis included 160 patients some of whom received weekly injections and are excluded from the efficacy analysis.Mean serum IGF-1 concentrations fell by at least 50%: 467 mg/L (SE 24), 526 mg/L (29), and 523 mg/L (40) in patients treated for 6, 12 and 18 months, respectively (p<0.001), whereas growth hormone increased by 12.5 mg/L (2.1), 12.5 mg/L (3.0), and 14.2 mg/L (5.7) (p<0.001). Of the patients treated for 12 months or more, 87 of 90 (97%) achieved a normal serum IGF-1 concentration. In patients withdrawn from pegvisomant (n=45), serum growth hormone concentrations were 8.0 mg/L (2.5) at baseline, rose to 15.2 mg/L (2.4) on drug, and fell back within 30 days of withdrawal to 8.3 mg/L (2.7). Antibodies to growth hormone were detected in 27 (16.9%) of patients, but no tachyphylaxis was seen. Serum insulin and glucose concentrations were significantly decreased (p<0.05). Two patients experienced progressive growth of their pituitary tumours, and two other patients had increased alanine and asparate aminotransferase concentrations requiring withdrawal from treatment. Mean pituitary tumour volume in 131 patients followed for a mean of 11.46 months (0.70) decreased by 0.033 cm(3) (0.057; p=0.353).Pegvisomant is an effective medical treatment for acromegaly.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view