SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Beveridge Malcolm) "

Search: WFRF:(Beveridge Malcolm)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gephart, Jessica A., et al. (author)
  • The 'seafood gap' in the food-water nexus literature-issues surrounding freshwater use in seafood production chains
  • 2017
  • In: Advances in Water Resources. - : Elsevier BV. - 0309-1708 .- 1872-9657. ; 110, s. 505-514
  • Journal article (peer-reviewed)abstract
    • Freshwater use for food production is projected to increase substantially in the coming decades with population growth, changing demographics, and shifting diets. Ensuring joint food-water security has prompted efforts to quantify freshwater use for different food products and production methods. However, few analyses quantify freshwater use for seafood production, and those that do use inconsistent water accounting. This inhibits water use comparisons among seafood products or between seafood and agricultural/livestock products. This 'seafood gap' in the food-water nexus literature will become increasingly problematic as seafood consumption is growing globally and aquaculture is one of the fastest growing animal food sectors in the world. Therefore, the present study 1) reviews freshwater use concepts as they relate to seafood production; 2) provides three cases to highlight the particular water use concerns for aquaculture, and; 3) outlines future directions to integrate seafood into the broader food-water nexus discussion. By revisiting water use concepts through a focus on seafood production systems, we highlight the key water use processes that should be considered for seafood production and offer a fresh perspective on the analysis of freshwater use in food systems more broadly. This is an open access article under the CC BY-NC-ND license.
  •  
2.
  • Henriksson, Patrik John Gustav, et al. (author)
  • Interventions for improving the productivity and environmental performance of global aquaculture for future food security
  • 2021
  • In: One Earth. - : Elsevier BV. - 2590-3330 .- 2590-3322. ; 4:9, s. 1220-1232
  • Journal article (peer-reviewed)abstract
    • Aquatic foods are increasingly being recognized as having an important role to play in an environmentally sustainable and nutritionally sufficient food system. Proposals for increasing aquatic food production often center around species, environments, and ambitious hi-tech solutions that mainly will benefit the 16% of the global population living in high-income countries. Meanwhile, most aquaculture species and systems suffer from large performance gaps, meaning that targeted interventions and investments could significantly boost aquatic food supply and access to nutritious foods without a concomitant increase in environmental footprints. Here we contend that the dialogue around aquatic foods should pay greater attention to identifying and implementing interventions to improve the productivity and environmental performance of low-value commodity species that have been relatively overlooked in this regard to date. We detail a range of available technical and institutional intervention options and evaluate their potential for increasing the output and environmental performance of global aquaculture.
  •  
3.
  • Kautsky, Nils, et al. (author)
  • Aquaculture
  • 2000. - 1
  • In: Encyclopedia of Biodiversity. - San Diego : Academic Press. - 0122268652 ; , s. 185-198
  • Book chapter (peer-reviewed)
  •  
4.
  • Troell, Max, et al. (author)
  • Aquaculture
  • 2017
  • In: Reference Module in Life Sciences.
  • Research review (peer-reviewed)abstract
    • Biophysical impacts of aquaculture, with consequences for biodiversity, vary with species and culture systems and include issues such as: nutrient enrichment/removal, chemicals, land use, species introductions, genetic flow to wild populations, disturbance of balance or introduction of pathogen/parasites, consumption of capture fishery resources, energy, and greenhouse gas emissions. Guiding principles, labeling schemes and various tools are needed to analyze performance and conformance. Ecological footprints and life-cycle analysis aim to capture biophysical performance, including up- and downstream effects of policy decisions. Aquaculture provides a range of services but also makes demands and impacts on ecosystem functions, services, and thus biodiversity.
  •  
5.
  • Troell, Max, et al. (author)
  • Aquaculture and biodiversity
  • 2013. - 2nd edition
  • In: Encyclopedia of biodiversity. - : Academic Press. ; , s. 189-201
  • Book chapter (peer-reviewed)
  •  
6.
  • Troell, Max, et al. (author)
  • Does aquaculture add resilience to the global food system?
  • 2014
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:37, s. 13257-13263
  • Journal article (peer-reviewed)abstract
    • Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (similar to 4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.
  •  
7.
  • Troell, Max, 1962-, et al. (author)
  • Perspectives on aquaculture's contribution to the Sustainable Development Goals for improved human and planetary health
  • 2023
  • In: Journal of the World Aquaculture Society. - 0893-8849 .- 1749-7345. ; 54:2, s. 251-342
  • Research review (peer-reviewed)abstract
    • The diverse aquaculture sector makes important contributions toward achieving the Sustainable Development Goals (SDGs)/Agenda 2030, and can increasingly do so in the future. Its important role for food security, nutrition, livelihoods, economies, and cultures is not clearly visible in the Agenda 21 declaration. This may partly reflect the state of development of policies for aquaculture compared with its terrestrial counterpart, agriculture, and possibly also because aquaculture production has historically originated from a few key hotspot regions/countries. This review highlights the need for better integration of aquaculture in global food system dialogues. Unpacking aquaculture's diverse functions and generation of values at multiple spatiotemporal scales enables better understanding of aquaculture's present and future potential contribution to the SDGs. Aquaculture is a unique sector that encompasses all aquatic ecosystems (freshwater, brackish/estuarine, and marine) and is also tightly interconnected with terrestrial ecosystems through, for example, feed resources and other dependencies. Understanding environmental, social, and economic characteristics of the multifaceted nature of aquaculture provides for more context-specific solutions for addressing both opportunities and challenges for its future development. This review includes a rapid literature survey based on how aquaculture links to the specific SDG indicators. A conceptual framework is developed for communicating the importance of context specificity related to SDG outcomes from different types of aquaculture. The uniqueness of aquaculture's contributions compared with other food production systems are discussed, including understanding of species/systems diversity, the role of emerging aquaculture, and its interconnectedness with supporting systems. A selection of case studies is presented to illustrate: (1) the diversity of the aquaculture sector and what role this diversity can play for contributions to the SDGs, (2) examples of methodologies for identification of aquaculture's contribution to the SDGs, and (3) trade-offs between farming systems' contribution to meeting the SDGs. It becomes clear that decision-making around resource allocation and trade-offs between aquaculture and other aquatic resource users needs review of a wide range of established and emergent systems. The review ends by highlighting knowledge gaps and pathways for transformation that will allow further strengthening of aquaculture's role for contributing to the SDGs. This includes identification and building on already existing monitoring that can enable capturing SDG-relevant aquaculture statistics at a national level and discussion of how a cohesive and comprehensive aquaculture strategy, framed to meet the SDGs, may help countries to prioritize actions for improving well-being.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view