SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bial Greg) "

Search: WFRF:(Bial Greg)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Edlund, Anna, 1983-, et al. (author)
  • Elucidating the effects of a high fat diet on markers of brain insulin signaling, gliosis and synaptic integrity in mice with humanized APOEε3
  • Other publication (other academic/artistic)abstract
    • Background: Mid-life obesity is associated with an increased risk of dementia, including Alzheimer’s disease (AD). Elevated circulating free fatty acids were previously shown tohamper insulin transport across the blood-brain barrier (BBB) and dysfunctional brain insulin signaling in turn negatively affects cognition by modulating excitatory synapses. Addressing links between diet, lipid metabolism and cognition in vivo is complicated by species-specific differences in lipid metabolism. Here we used FRGN mice with humanized livers of the AD risk-neutral APOEε3/ε3 genotype to explore the effects of a high-fat diet (HFD) on markers of insulin signaling, gliosis and synaptic integrity in the brain.Methods: FRGN mice (n=11) with humanized livers of the APOEε3/ε3 genotype were fed normal chow (n=3) versus a HFD for 12 (n=5) or 20 weeks (n=3). Brain cortical and hippocampal tissues were biochemically analysed for changes in markers of gliosis, synaptic integrity, glucose transporters and insulin signaling. Immunohistochemistry (IHC) was used to assess whether the identified changes replicated at the histological level.Results: Humanization of the mouse liver produced human-like levels of plasma apolipoprotein B and low-density lipoprotein, which were further increased by a 12 week HFD. Mice on the HFD exhibited increased phosphorylation of the insulin receptor substrate 1 (IRS-1) at Ser-616, previously linked to brain insulin resistance, in parallel with reduced cortical marker levels of synaptic AMPAR. Markers of hippocampal insulin signaling were unaffected by the HFD however we observed an increase in the astrocytic marker GFAP but not the microglia- associated IBA1, and intracellular apolipoprotein E (apoE) levels alongside altered levels of the postsynaptic AMPA receptors and PSD-95. Hippocampal and cortical marker levels of the pre-synaptic synaptophysin were increased. The observed changes in the brain tissues were subtle and only alterations in the synaptophysin levels were corroborated using IHC.Conclusions: Our findings suggest that a HFD alters insulin signaling specifically in the cortex, and the levels of AMPAR, PSD-95, synaptophysin and apoE in the brains of FRGN mice with humanized livers, in the absence of microglia activation. These findings support a key role of the diet in brain health with implications for diseases like AD.
  •  
2.
  • Edlund, Anna K., et al. (author)
  • Impact of high-fat diet on brain integrity in APOEε3 humanized liver mice
  • Other publication (other academic/artistic)abstract
    • Mid-life obesity and dysfunctional brain insulin signaling are associated with an increased risk of dementia. We used FRGN mice (n=11) with humanized APOEε3/ε3 livers to explore the effects of a high-fat-diet (HFD) on markers of insulin signaling, gliosis and synaptic integrityin brain cortical and hippocampal tissues using western blotting and immunohistochemistry.Humanization of the mouse liver produced human-like levels of plasma apolipoprotein B and low-density lipoprotein, which were increased by a 12 week HFD. Mice on the HFD exhibitedincreased phosphorylation of insulin receptor substrate 1 (IRS-1-Ser612) and reduced cortical levels of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Hippocampal insulin signaling markers were unaffected but the astrocytic marker glial fibrillary acidic protein (GFAP), apolipoprotein E (apoE) and synatophysin were elevated alongsidealtered levels of AMPAR. Our results acquired in a humanized liver mouse model support a key role of the diet in brain health, with implications for diseases like AD. 
  •  
3.
  • Giannisis,, Andreas, et al. (author)
  • Brain integrity is altered by hepatic APOEε4 in humanized-liver mice
  • Other publication (other academic/artistic)abstract
    • Liver-generated plasma apolipoprotein E (apoE) does not enter the brain but nonetheless correlates with Alzheimer’s disease (AD) risk and AD biomarker levels. Carriers of APOEε4, the strongest genetic AD risk factor, exhibit lower plasma apoE and altered brain integrity already at mid-life versus non-APOEε4 carriers. Whether altered plasma liver-derived apoE or specifically an APOEε4 liver phenotype promotes brain injury and neurodegeneration is unknown. Here we investigated the brains of Fah-/-, Rag2-/-, Il2rg-/- mice on the Non-Obese Diabetic (NOD) background (FRGN) with humanized-livers of an AD risk-associated APOE ε4/ε4 versus an APOE ε2/ε3 genotype. Reduced endogenous mouse apoE levels in the brains of APOE ε4/ε4 liver mice were accompanied by various changes in markers of synaptic integrity, neuroinflammation, and insulin signaling. Plasma apoE4 levels were associated with unfavorable changes in several of the assessed markers. These results propose a previously unexplored role of the liver in the APOEε4-associated risk neurodegenerative diseases.
  •  
4.
  • Giannisis, Andreas, et al. (author)
  • Brain integrity is altered by hepatic APOE ε4 in humanized-liver mice
  • 2022
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27:8, s. 3533-3543
  • Journal article (peer-reviewed)abstract
    • Liver-generated plasma apolipoprotein E (apoE) does not enter the brain but nonetheless correlates with Alzheimer’s disease (AD) risk and AD biomarker levels. Carriers of APOEε4, the strongest genetic AD risk factor, exhibit lower plasma apoE and altered brain integrity already at mid-life versus non-APOEε4 carriers. Whether altered plasma liver-derived apoE or specifically an APOEε4 liver phenotype promotes neurodegeneration is unknown. Here we investigated the brains of Fah−/−, Rag2−/−, Il2rg−/− mice on the Non-Obese Diabetic (NOD) background (FRGN) with humanized-livers of an AD risk-associated APOE ε4/ε4 versus an APOE ε2/ε3 genotype. Reduced endogenous mouse apoE levels in the brains of APOE ε4/ε4 liver mice were accompanied by various changes in markers of synaptic integrity, neuroinflammation and insulin signaling. Plasma apoE4 levels were associated with unfavorable changes in several of the assessed markers. These results propose a previously unexplored role of the liver in the APOEε4-associated risk of neurodegenerative disease.
  •  
5.
  • Kessler, Kat, et al. (author)
  • Behavioral and cognitive performance of humanized APOEε3/ε3 liver mice in relation to plasma apolipoprotein E levels
  • 2023
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 13
  • Journal article (peer-reviewed)abstract
    • Plasma apolipoprotein E levels were previously associated with the risk of developing Alzheimer’s disease (AD), levels of cerebrospinal fluid AD biomarkers, cognition and imaging brain measures. Outside the brain, the liver is the primary source of apoE and liver transplantation studies have demonstrated that liver-derived apoE does not cross the blood–brain-barrier. How hepatic apoE may be implicated in behavioral and cognitive performance is not clear. In the current study, we behaviorally tested FRGN mice with humanized liver harboring the ε3/ε3 genotype (E3-human liver (HL)) and compared their behavioral and cognitive performance with that of age-matched ε3/ε3 targeted replacement (E3-TR) mice, the latter produces human apoE3 throughout the body whereas the E3-HL mice endogenously produce human apoE3 only in the liver. We also compared the liver weights and plasma apoE levels, and assessed whether plasma apoE levels were correlated with behavioral or cognitive measures in both models. E3-HL were more active but performed cognitively worse than E3-TR mice. E3-HL mice moved more in the open field containing objects, showed higher activity levels in the Y maze, showed higher activity levels during the baseline period in the fear conditioning test than E3-TR mice, and swam faster than E3-TR mice during training to locate the visible platform in the water maze. However, E3-HL mice showed reduced spatial memory retention in the water maze and reduced fear learning and contextual and cued fear memory than E3-TR mice. Liver weights were greater in E3-HL than E3-TR mice and sex-dependent only in the latter model. Plasma apoE3 levels were similar to those found in humans and comparable in female and male E3-TR mice but higher in female E3-HL mice. Finally, we found correlations between plasma apoE levels and behavioral and cognitive measures which were predominantly model-dependent. Our study demonstrates mouse-model dependent associations between plasma apoE levels, behavior and cognition in an ‘AD-neutral’ setting and suggests that a humanized liver might be sufficient to induce mouse behavioral and cognitive phenotypes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view