SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bianco Paolo) "

Search: WFRF:(Bianco Paolo)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andreoni, Igor, et al. (author)
  • Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory
  • 2022
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 260:1
  • Journal article (peer-reviewed)abstract
    • The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory's Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events.
  •  
2.
  • Backes, Claudia, et al. (author)
  • Production and processing of graphene and related materials
  • 2020
  • In: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Journal article (peer-reviewed)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
3.
  • Bianco, Paolo, et al. (author)
  • Regulation of stem cell therapies under attack in Europe: for whom the bell tolls
  • 2013
  • In: EMBO Journal. - : Wiley. - 1460-2075 .- 0261-4189. ; 32:11, s. 1489-1495
  • Journal article (other academic/artistic)abstract
    • At the time of writing, the Italian Parliament is debating a new law that would make it legal to practice an unproven stem cell treatment in public hospitals. The treatment, offered by a private non-medical organization, may not be safe, lacks a rationale, and violates current national laws and European regulations. This case raises multiple concerns, most prominently the urgent need to protect patients who are severely ill, exposed to significant risks, and vulnerable to exploitation. The scientific community must consider the context-social, financial, medical, legal-in which stem cell science is currently situated and the need for stringent regulation. Additional concerns are emerging. These emanate from the novel climate, created within science itself, and stem cell science in particular, by the currently prevailing model of 'translational medicine'. Only rigorous science and rigorous regulation can ensure translation of science into effective therapies rather than into ineffective market products, and mark, at the same time, the sharp distinction between the striving for new therapies and the deceit of patients.
  •  
4.
  • Cavarretta, Elena, et al. (author)
  • The role of echocardiography in sports cardiology : An expert opinion statement of the Italian Society of Sports Cardiology (SIC sport)
  • 2024
  • In: International Journal of Cardiology. - 0167-5273. ; 410
  • Journal article (peer-reviewed)abstract
    • Transthoracic echocardiography (TTE) is routinely required during pre-participation screening in the presence of symptoms, family history of sudden cardiac death or cardiomyopathies <40-year-old, murmurs, abnormal ECG findings or in the follow-up of athletes with a history of cardiovascular disease (CVD). TTE is a cost-effective first-line imaging modality to evaluate the cardiac remodeling due to long-term, intense training, previously known as the athlete's heart, and to rule out the presence of conditions at risk of sudden cardiac death, including cardiomyopathies, coronary artery anomalies, congenital, aortic and heart valve diseases. Moreover, TTE is useful for distinguishing physiological cardiac adaptations during intense exercise from pathological behavior due to an underlying CVD. In this expert opinion statement endorsed by the Italian Society of Sports Cardiology, we discussed common clinical scenarios where a TTE is required and conditions falling in the grey zone between the athlete's heart and underlying cardiomyopathies or other CVD. In addition, we propose a minimum dataset that should be included in the report for the most common indications of TTE in sports cardiology clinical practice.
  •  
5.
  • Cerritelli, Giulia, et al. (author)
  • Assessing reliance on vector navigation in the long-distance oceanic migrations of green sea turtles
  • 2019
  • In: Behavioral Ecology. - : Oxford University Press (OUP). - 1045-2249 .- 1465-7279. ; 30:1, s. 68-79
  • Journal article (peer-reviewed)abstract
    • Vector navigation, i.e., maintaining a constant heading for a given amount of time, is hypothesized to provide a viable basis for the navigational feats of a number of long-distance animal migrants. Since animals following this strategy are subject to drift by wind or by ocean current, performing long migrations relying on vector navigation is particularly challenging. We tested whether vector navigation could be involved in the migrations of green turtles (Chelonia mydas) that migrate between the remote Ascension Island and Brazil. To this aim, a novel approach was followed using individual-based numerical models to simulate migratory trajectories of virtual turtles that were compared to actual routes reconstructed by satellite. Simulated postnesting migrations from Ascension revealed that weak currents enabled modeled turtles to reach the Brazilian coast, but only for a limited range of headings around due West. This conclusion was corroborated by comparing modeled trajectories with the actual routes of previously tracked turtles, with a beeline vector navigation strategy providing the best fit, although a true-navigation strategy directed to the landfall site produced similar results. Finally, we tested if a vector navigational strategy was feasible for the prebreeding migration from Brazil towards Ascension, but modeled routes mostly failed to reach the island or a larger area around it, with individuals drifting away under the influence of currents. We conclude that Ascension turtles can take advantage of vector navigation when migrating towards a wide target like the Brazilian coast, while the demanding prebreeding migration likely requires more complex navigational systems.
  •  
6.
  • Coduri, Mauro, et al. (author)
  • Local structure and magnetism of Fe2O3 maghemite nanocrystals : The role of crystal dimension
  • 2020
  • In: Nanomaterials. - : MDPI AG. - 2079-4991. ; 10:5
  • Journal article (peer-reviewed)abstract
    • Here we report on the impact of reducing the crystalline size on the structural and magnetic properties of γ-Fe2O3 maghemite nanoparticles. A set of polycrystalline specimens with crystallite size ranging from ~2 to ~50 nm was obtained combining microwave plasma synthesis and commercial samples. Crystallite size was derived by electron microscopy and synchrotron powder diffraction, which was used also to investigate the crystallographic structure. The local atomic structure was inquired combining pair distribution function (PDF) and X-ray absorption spectroscopy (XAS). PDF revealed that reducing the crystal dimension induces the depletion of the amount of Fe tetrahedral sites. XAS confirmed significant bond distance expansion and a loose Fe-Fe connectivity between octahedral and tetrahedral sites. Molecular dynamics revealed important surface effects, whose implementation in PDF reproduces the first shells of experimental curves. The structural disorder affects the magnetic properties more and more with decreasing the nanoparticle size. In particular, the saturation magnetization reduces, revealing a spin canting effect. Moreover, a large effective magnetic anisotropy is measured at low temperature together with an exchange bias effect, a behavior that we related to the existence of a highly disordered glassy magnetic phase.
  •  
7.
  • Marto, João Pedro, et al. (author)
  • Safety and Outcome of Revascularization Treatment in Patients With Acute Ischemic Stroke and COVID-19: The Global COVID-19 Stroke Registry.
  • 2023
  • In: Neurology. - 1526-632X. ; 100:7
  • Journal article (peer-reviewed)abstract
    • COVID-19-related inflammation, endothelial dysfunction, and coagulopathy may increase the bleeding risk and lower the efficacy of revascularization treatments in patients with acute ischemic stroke (AIS). We aimed to evaluate the safety and outcomes of revascularization treatments in patients with AIS and COVID-19.This was a retrospective multicenter cohort study of consecutive patients with AIS receiving intravenous thrombolysis (IVT) and/or endovascular treatment (EVT) between March 2020 and June 2021 tested for severe acute respiratory syndrome coronavirus 2 infection. With a doubly robust model combining propensity score weighting and multivariate regression, we studied the association of COVID-19 with intracranial bleeding complications and clinical outcomes. Subgroup analyses were performed according to treatment groups (IVT-only and EVT).Of a total of 15,128 included patients from 105 centers, 853 (5.6%) were diagnosed with COVID-19; of those, 5,848 (38.7%) patients received IVT-only and 9,280 (61.3%) EVT (with or without IVT). Patients with COVID-19 had a higher rate of symptomatic intracerebral hemorrhage (SICH) (adjusted OR 1.53; 95% CI 1.16-2.01), symptomatic subarachnoid hemorrhage (SSAH) (OR 1.80; 95% CI 1.20-2.69), SICH and/or SSAH combined (OR 1.56; 95% CI 1.23-1.99), 24-hour mortality (OR 2.47; 95% CI 1.58-3.86), and 3-month mortality (OR 1.88; 95% CI 1.52-2.33). Patients with COVID-19 also had an unfavorable shift in the distribution of the modified Rankin score at 3 months (OR 1.42; 95% CI 1.26-1.60).Patients with AIS and COVID-19 showed higher rates of intracranial bleeding complications and worse clinical outcomes after revascularization treatments than contemporaneous non-COVID-19 patients receiving treatment. Current available data do not allow direct conclusions to be drawn on the effectiveness of revascularization treatments in patients with COVID-19 or to establish different treatment recommendations in this subgroup of patients with ischemic stroke. Our findings can be taken into consideration for treatment decisions, patient monitoring, and establishing prognosis.The study was registered under ClinicalTrials.gov identifier NCT04895462.
  •  
8.
  • Plantone, Domenico, et al. (author)
  • Clinically relevant increases in serum neurofilament light chain and glial fibrillary acidic protein in patients with Susac syndrome
  • 2023
  • In: European Journal of Neurology. - : John Wiley & Sons. - 1351-5101 .- 1468-1331. ; 30:10, s. 3256-3264
  • Journal article (peer-reviewed)abstract
    • Background and purpose: Serum levels of neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are promising neuro-axonal damage and astrocytic activation biomarkers. Susac syndrome (SS) is an increasingly recognized neurological condition and biomarkers that can help assess and monitor disease evolution are highly needed for the adequate management of these patients. sNfL and sGFAP levels were evaluated in patients with SS and their clinical relevance in the relapse and remission phase of the disease was assessed. Methods: As part of a multicentre study that enrolled patients diagnosed with SS from six international centres, sNfL and sGFAP levels were assessed in 22 SS patients (nine during a relapse and 13 in remission) and 59 age-and sex-matched healthy controls using SimoaTM assay Neurology 2-Plex B Kit. Results: Serum NfL levels were higher than those of healthy controls (p < 0.001) in SS patients and in both subgroups of patients in relapse and in remission (p < 0.001 for both), with significantly higher levels in relapse than in remission (p = 0.008). sNfL levels showed a negative correlation with time from the last relapse (r = -0.663; p = 0.001). sGFAP levels were slightly higher in the whole group of patients than in healthy controls (p = 0.046) and were more pronounced in relapse than in remission (p = 0.013). Conclusion: In SS patients, both sNFL and sGFAP levels increased compared with healthy controls. Both biomarkers had higher levels during clinical relapse and much lower levels in remission. sNFL was shown to be time sensitive to clinical changes and can be useful to monitor neuro-axonal damage in SS.
  •  
9.
  • Tavaglione, Federica, et al. (author)
  • Development and Validation of a Score for Fibrotic Non-Alcoholic Steatohepatitis.
  • 2023
  • In: Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. - : Elsevier BV. - 1542-7714. ; 21:6, s. 1523-1532
  • Journal article (peer-reviewed)abstract
    • Non-invasive assessment of histological features of non-alcoholic fatty liver disease (NAFLD) has been an intensive research area over the last decade. Herein, we aimed to develop a simple non-invasive score using routine laboratory tests to identify, among individuals at high risk for NAFLD, those with fibrotic non-alcoholic steatohepatitis (NASH) defined as NASH, NAFLD activity score (NAS) ≥4, and fibrosis stage ≥2.The derivation cohort included 264 morbidly obese individuals undergoing intraoperative liver biopsy in Rome, Italy. The best predictive model was developed and internally validated using a bootstrapping stepwise logistic regression analysis (2000 bootstrap samples). Performance was estimated by the area under the receiver operating characteristic curve (AUROC). External validation was assessed in three independent European cohorts (Finland, n=370; Italy n=947; England n=5,368) of individuals at high risk for NAFLD.The final predictive model, designated as Fibrotic NASH Index (FNI), combined aspartate aminotransferase (AST), high-density lipoprotein (HDL) cholesterol, and hemoglobin A1c (HbA1c). The performance of FNI for fibrotic NASH was satisfactory in both derivation and external validation cohorts (AUROCs 0.78 and 0.80-0.95, respectively). In the derivation cohort, rule-out and rule-in cut-offs were 0.10 for sensitivity ≥0.89 (negative predictive value [NPV] 0.93) and 0.33 for specificity ≥0.90 (positive predictive value [PPV] 0.57), respectively. In the external validation cohorts, sensitivity ranged from 0.87 to 1 (NPV 0.99-1) and specificity from 0.73 to 0.94 (PPV 0.12-0.49) for rule-out and rule-in cut-off, respectively.FNI is an accurate, simple, and affordable non-invasive score which can be used in primary healthcare to screen for fibrotic NASH individuals with dysmetabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9
Type of publication
journal article (9)
Type of content
peer-reviewed (8)
other academic/artistic (1)
Author/Editor
Nicholl, Matt (1)
Rest, Armin (1)
Kasliwal, Mansi M. (1)
Bloom, Joshua S. (1)
Smartt, S. J. (1)
Jood, Katarina, 1966 (1)
show more...
Bulla, Mattia (1)
Kool, Erik C. (1)
Sagués Carracedo, An ... (1)
Steeghs, D. (1)
Yang, Sheng (1)
Goobar, Ariel (1)
Miller, A. A. (1)
Yki-Järvinen, Hannel ... (1)
Ceresoli, Davide (1)
Morandi, Vittorio (1)
Levan, Andrew (1)
Tiu, Cristina (1)
Mikulik, Robert (1)
Lindvall, Olle (1)
Ntaios, George (1)
Anand, Shreya (1)
Coughlin, Michael W. (1)
Andreoni, Igor (1)
Cenko, S. Bradley (1)
Singer, Leo P. (1)
Karambelkar, Viraj (1)
Lipsanen, Harri (1)
Nordanstig, Annika, ... (1)
Botas, Cristina (1)
Carriazo, Daniel (1)
Rojo, Teofilo (1)
Ricci, Fabrizio (1)
Beyer, André (1)
Mancina, Rosellina M ... (1)
Romeo, Stefano, 1976 (1)
Åkesson, Susanne (1)
Jansky, Petr (1)
Stolze, Lotte J (1)
Zini, Andrea (1)
Baumgartner, Philipp (1)
Zedde, Marialuisa (1)
Pezzini, Alessandro (1)
Cereda, Carlo W (1)
Wegener, Susanne (1)
Michel, Patrik (1)
Gentile, Mauro (1)
Arnold, Marcel (1)
Gensicke, Henrik (1)
Sinagra, Gianfranco (1)
show less...
University
Lund University (4)
University of Gothenburg (2)
Uppsala University (1)
Stockholm University (1)
Linköping University (1)
Chalmers University of Technology (1)
Language
English (9)
Research subject (UKÄ/SCB)
Natural sciences (5)
Medical and Health Sciences (4)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view