SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bittrich Eva) "

Search: WFRF:(Bittrich Eva)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bittrich, Eva, et al. (author)
  • Morphology of Thin Films of Aromatic Ellagic Acid and Its Hydrogen Bonding Interactions
  • 2020
  • In: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 124:30, s. 16381-16390
  • Journal article (peer-reviewed)abstract
    • Ellagic acid (EA), an antioxidant from fruits or other plants, has recently evoked interest in the field of organic electronics because of its weak electron donor properties. In this work, the preparation of uniaxial pi-stacked EA films by thermal evaporation on different surfaces is reported for the first time. The (102) lattice plane of the pi-electron system was confirmed as the contact plane for one monolayer equivalent on Ag(111) by low-electron energy diffraction. X-ray and atomic force microscopy measurements revealed nanocrystalline grains with an average inplane size of 50 nm and considerably smaller average out-of-plane crystallite sizes (16-25 nm) in films of 16-75 nm thickness. The influence of different substrates was minor compared to the effect of the film thickness. An increase in the in-plane density of grains at larger film thicknesses was deduced from the trend in their uniaxial optical properties. Weak and strong intermolecular H-bonding interactions were identified in the EA crystal lattice, while a surplus of weak H-bonding was observed for the nanocrystallites in thin films, as compared to bulk EA. Finally, EA was coevaporated with the semiconducting thiophene molecule DCV4T-Et-2 to demonstrate principle interactions with a guest molecule by H-bonding analysis. Our results illustrate the feasibility of applying EA films as alignment layers for templating other semiconducting organic films used in organic electronic devices.
  •  
2.
  • Mantz, Amy, et al. (author)
  • Free Polyethylenimine Enhances Substrate-Mediated Gene Delivery on Titanium Substrates Modified With RGD-Functionalized Poly(acrylic acid) Brushes
  • 2019
  • In: Frontiers in Chemistry. - : FRONTIERS MEDIA SA. - 2296-2646. ; 7
  • Journal article (peer-reviewed)abstract
    • Substrate mediated gene delivery (SMD) is a method of immobilizing DNA complexes to a substrate via covalent attachment or nonspecific adsorption, which allows for increased transgene expression with less DNA compared to traditional bolus delivery. It may also increase cells receptivity to transfection via cell-material interactions. Substrate modifications with poly(acrylic) acid (PM) brushes may improve SMD by enhancing substrate interactions with DNA complexes via tailored surface chemistry and increasing cellular adhesion via moieties covalently bound to the brushes. Previously, we described a simple method to graft PM brushes to Ti and further demonstrated conjugation of cell adhesion peptides (i.e., RGD) to the PM brushes to improve biocompatibility. The objective of this work was to investigate the ability of Ti substrates modified with PM-RGD brushes (PM-RGD) to immobilize complexes composed of branched polyethyleneimine and DNA plasmids (bPEI-DNA) and support SMD in NIH/3T3 fibroblasts. Transfection in NIH/3T3 cells cultured on bPEI-DNA complexes immobilized onto PM-RGD substrates was measured and compared to transfection in cells cultured on control surfaces with immobilized complexes including Flat Ti, PM brushes modified with a control peptide (RGE), and unmodified PM. Transfection was two-fold higher in cells cultured on PM-RGD compared to those cultured on all control substrates. While DNA immobilization measured with radiolabeled DNA indicated that all substrates (PM-RGD, unmodified PM, Flat Ti) contained nearly equivalent amounts of loaded DNA, ellipsometric measurements showed that more total mass (i.e., DNA and bPEI, both complexed and free) was immobilized to PM and PM-RGD compared to Flat Ti. The increase in adsorbed mass may be attributed to free bPEI, which has been shown to improve transfection. Further transfection investigations showed that removing free bPEI from the immobilized complexes decreased SMD transfection and negated any differences in transfection success between cells cultured on PM-RGD and on control substrates, suggesting that free bPEI may be beneficial for SMD in cells cultured on bPEI-DNA complexes immobilized on PM-RGD grafted to Ti. This work demonstrates that substrate modification with PM-RGD is a feasible method to enhance SMD outcomes on Ti and may be used for future applications such as tissue engineering, gene therapy, and diagnostics.
  •  
3.
  • Chae, Soosang, et al. (author)
  • Stretchable Thin Film Mechanical-Strain-Gated Switches and Logic Gate Functions Based on a Soft Tunneling Barrier
  • 2021
  • In: Advanced Materials. - : Wiley-Blackwell. - 0935-9648 .- 1521-4095. ; 33:41
  • Journal article (peer-reviewed)abstract
    • Mechanical-strain-gated switches are cornerstone components of material-embedded circuits that perform logic operations without using conventional electronics. This technology requires a single material system to exhibit three distinct functionalities: strain-invariant conductivity and an increase or decrease of conductivity upon mechanical deformation. Herein, mechanical-strain-gated electric switches based on a thin-film architecture that features an insulator-to-conductor transition when mechanically stretched are demonstrated. The conductivity changes by nine orders of magnitude over a wide range of tunable working strains (as high as 130%). The approach relies on a nanometer-scale sandwiched bilayer Au thin film with an ultrathin poly(dimethylsiloxane) elastomeric barrier layer; applied strain alters the electron tunneling currents through the barrier. Mechanical-force-controlled electric logic circuits are achieved by realizing strain-controlled basic (AND and OR) and universal (NAND and NOR) logic gates in a single system. The proposed material system can be used to fabricate material-embedded logics of arbitrary complexity for a wide range of applications including soft robotics, wearable/implantable electronics, human-machine interfaces, and Internet of Things.
  •  
4.
  • Koenig, Meike, et al. (author)
  • Salt Sensitivity of the Thermoresponsive Behavior of PNIPAAm Brushes
  • 2018
  • In: Langmuir. - : AMER CHEMICAL SOC. - 0743-7463 .- 1520-5827. ; 34:7, s. 2448-2454
  • Journal article (peer-reviewed)abstract
    • We report investigations on the salt sensitivity of the thermoresponsive behavior of PNIPAAm brushes applying the quartz crystal microbalance coupled with spectroscopic ellipsometry technique. This approach enables a detailed study of the optical and mechanical behavior of the polymer coatings. Additional conclusions can be drawn from the difference between both techniques due to a difference in the contrast mechanism of both methods. A linear shift of the phase transition temperature to lower temperatures with the addition of sodium chloride was found, similar to the behavior of free polymer chains in solution. The thermal hysteresis was found to be decreased by the addition of sodium chloride to the solution, hinting to the interaction of the ions with the amide groups of the polymer, whereby the formation of hydrogen bonds is hindered. The results of this study are of relevance to the application of PNIPAAm brushes in biological fluids and demonstrate the additional potential of the ion sensitivity besides the better known thermosensitivity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view