SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bjugård Nyberg Henrik) "

Search: WFRF:(Bjugård Nyberg Henrik)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bjugård Nyberg, Henrik, 1984- (author)
  • Garnishing the smorgasbord of pharmacometric methods
  • 2024
  • Doctoral thesis (other academic/artistic)abstract
    • The smorgasbord of methods that we use within the field of pharmacometrics has developed steadily over several decades and is now a well-laid-out buffet. This thesis adds some garnish to the table in the form of small improvements to the handling of certain problems.The first problem tackled by the thesis was the challenge of saddle points and local non-identifiability when estimating pharmacometric model parameters. Substituting the common method of randomly perturbing the initial parameter estimates with one saddle-reset step enhances the accuracy of maximum likelihood estimates by overcoming saddle points parameter values, a common issue in nonlinear mixed-effects models. This algorithm, as implemented in the NONMEM software, was applied to various identifiable and nonidentifiable pharmacometric models, showing improved performance over traditional methods.Part of the thesis was dedicated to the development of a paediatric pharmacokinetic model for ethionamide, a drug used in treating multidrug-resistant tuberculosis. The resulting model was then used to simulate drug exposure under different dosing regimens, a new dosing regimen for children was proposed. The developed model, and therefore the proposed paediatric dosing regimen, considers factors like maturation of pharmacokinetic pathways and, administration by nasogastric tube, and concurrent rifampicin treatment. The regimen, with some modifications, was adopted in the 2022 update to the World Health Organization operational handbook on tuberculosis.Finally, the thesis explored novel model-integrated evidence (MIE) approaches for bioequivalence (BE) determination. Such methods could offer more robust alternatives to standard BE approached using non-compartmental analysis (NCA). Model-based methods have been shown to be advantageous in sparse data situations, such as is found in studies of ophthalmic formulations, but have suffered from inflated type I error rates. MIE BE approaches using a single model or using model averaging were presented and shown to control type I error at the nominal level while demonstrating increased power in bioequivalence determination.
  •  
3.
  • Bjugård Nyberg, Henrik, 1984-, et al. (author)
  • Population Pharmacokinetics and Dosing of Ethionamide in Children with Tuberculosis
  • 2020
  • In: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 64:3
  • Journal article (peer-reviewed)abstract
    • Ethionamide has proven efficacy against both drug-susceptible and some drug-resistant strains of Mycobacterium tuberculosis. Limited information on its pharmacokinetics in children is available, and current doses are extrapolated from weight-based adult doses. Pediatric doses based on more robust evidence are expected to improve antituberculosis treatment, especially in small children. In this analysis, ethionamide concentrations in children from 2 observational clinical studies conducted in Cape Town, South Africa, were pooled. All children received ethionamide once daily at a weight-based dose of approximately 20 mg/kg of body weight (range, 10.4 to 25.3 mg/kg) in combination with other first- or second-line antituberculosis medications and with antiretroviral therapy in cases of HIV coinfection. Pharmacokinetic parameters were estimated using nonlinear mixed-effects modeling. The MDR-PK1 study contributed data for 110 children on treatment for multidrug-resistant tuberculosis, while the DATiC study contributed data for 9 children treated for drug-susceptible tuberculosis. The median age of the children in the studies combined was 2.6 years (range, 0.23 to 15 years), and the median weight was 12.5 kg (range, 2.5 to 66 kg). A one-compartment, transit absorption model with first-order elimination best described ethionamide pharmacokinetics in children. Allometric scaling of clearance (typical value, 8.88 liters/h), the volume of distribution (typical value, 21.4 liters), and maturation of clearance and absorption improved the model fit. HIV coinfection decreased the ethionamide bioavailability by 22%, rifampin coadministration increased clearance by 16%, and ethionamide administration by use of a nasogastric tube increased the rate, but the not extent, of absorption. The developed model was used to predict pediatric doses achieving the same drug exposure achieved in 50- to 70-kg adults receiving 750-mg once-daily dosing. Based on model predictions, we recommend a weight-banded pediatric dosing scheme using scored 125-mg tablets.
  •  
4.
  • Bjugård Nyberg, Henrik, et al. (author)
  • Saddle-Reset for Robust Parameter Estimation and Identifiability Analysis of Nonlinear Mixed Effects Models
  • 2020
  • In: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 22:4
  • Journal article (peer-reviewed)abstract
    • Parameter estimation of a nonlinear model based on maximizing the likelihood using gradient-based numerical optimization methods can often fail due to premature termination of the optimization algorithm. One reason for such failure is that these numerical optimization methods cannot distinguish between the minimum, maximum, and a saddle point; hence, the parameters found by these optimization algorithms can possibly be in any of these three stationary points on the likelihood surface. We have found that for maximization of the likelihood for nonlinear mixed effects models used in pharmaceutical development, the optimization algorithm Broyden-Fletcher-Goldfarb-Shanno (BFGS) often terminates in saddle points, and we propose an algorithm, saddle-reset, to avoid the termination at saddle points, based on the second partial derivative test. In this algorithm, we use the approximated Hessian matrix at the point where BFGS terminates, perturb the point in the direction of the eigenvector associated with the lowest eigenvalue, and restart the BFGS algorithm. We have implemented this algorithm in industry standard software for nonlinear mixed effects modeling (NONMEM, version 7.4 and up) and showed that it can be used to avoid termination of parameter estimation at saddle points, as well as unveil practical parameter non-identifiability. We demonstrate this using four published pharmacometric models and two models specifically designed to be practically non-identifiable.
  •  
5.
  •  
6.
  • Swat, M. J., et al. (author)
  • Pharmacometrics Markup Language (PharmML) : Opening New Perspectives for Model Exchange in Drug Development
  • 2015
  • In: CPT. - : American Society for Clinical Pharmacology & Therapeutics. - 2163-8306. ; 4:6, s. 316-319
  • Journal article (peer-reviewed)abstract
    • The lack of a common exchange format for mathematical models in pharmacometrics has been a long-standing problem. Such a format has the potential to increase productivity and analysis quality, simplify the handling of complex workflows, ensure reproducibility of research, and facilitate the reuse of existing model resources. Pharmacometrics Markup Language (PharmML), currently under development by the Drug Disease Model Resources (DDMoRe) consortium, is intended to become an exchange standard in pharmacometrics by providing means to encode models, trial designs, and modeling steps.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view