SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Boggild H.) "

Search: WFRF:(Boggild H.)

  • Result 1-10 of 119
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Backes, Claudia, et al. (author)
  • Production and processing of graphene and related materials
  • 2020
  • In: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Journal article (peer-reviewed)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
2.
  •  
3.
  • Cornelissen, R., et al. (author)
  • The Cell Envelope Structure of Cable Bacteria
  • 2018
  • In: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 9
  • Journal article (peer-reviewed)abstract
    • Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a similar to 50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria.
  •  
4.
  • Hamer, Davidson H., et al. (author)
  • Travel-Associated Zika Virus Disease Acquired in the Americas Through February 2016 A GeoSentinel Analysis
  • 2017
  • In: Annals of Internal Medicine. - Philadelphia : American College of Physicians. - 0003-4819 .- 1539-3704. ; 166:2, s. 99-108
  • Journal article (peer-reviewed)abstract
    • Background: Zika virus has spread rapidly in the Americas and has been imported into many nonendemic countries by travelers. Objective: To describe clinical manifestations and epidemiology of Zika virus disease in travelers exposed in the Americas. Design: Descriptive, using GeoSentinel records. Setting: 63 travel and tropical medicine clinics in 30 countries. Patients: Ill returned travelers with a confirmed, probable, or clinically suspected diagnosis of Zika virus disease seen between January 2013 and 29 February 2016. Measurements: Frequencies of demographic, trip, and clinical characteristics and complications. Results: Starting in May 2015, 93 cases of Zika virus disease were reported. Common symptoms included exanthema (88%), fever (76%), and arthralgia (72%). Fifty-nine percent of patients were exposed in South America; 71% were diagnosed in Europe. Case status was established most commonly by polymerase chain reaction (PCR) testing of blood and less often by PCR testing of other body fluids or serology and plaque-reduction neutralization testing. Two patients developed Guillain-Barre syndrome, and 3 of 4 pregnancies had adverse outcomes (microcephaly, major fetal neurologic abnormalities, and intrauterine fetal death). Limitation: Surveillance data collected by specialized clinics may not be representative of all ill returned travelers, and denominator data are unavailable. Conclusion: These surveillance data help characterize the clinical manifestations and adverse outcomes of Zika virus disease among travelers infected in the Americas and show a need for global standardization of diagnostic testing. The serious fetal complications observed in this study highlight the importance of travel advisories and prevention measures for pregnant women and their partners. Travelers are sentinels for global Zika virus circulation and may facilitate further transmission.
  •  
5.
  •  
6.
  • Adam, J., et al. (author)
  • Search for weakly decaying (Lambda n)over-bar and Lambda Lambda exotic bound states in central Pb-Pb collisions at root S-NN=2.76 TeV
  • 2016
  • In: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693. ; 752, s. 267-277
  • Journal article (peer-reviewed)abstract
    • We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible (Lambda n) over bar bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at root S-NN = 2.76 TeV, by invariant mass analysis in the decay modes (Lambda n) over bar (d) over bar pi(+) and H-dibaryon -> Lambda p pi(-). No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.
  •  
7.
  • Glerup, S., et al. (author)
  • SorCS2 is required for BDNF-dependent plasticity in the hippocampus
  • 2016
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 21:12, s. 1740-1751
  • Journal article (peer-reviewed)abstract
    • SorCS2 is a member of the Vps10p-domain receptor gene family receptors with critical roles in the control of neuronal viability and function. Several genetic studies have suggested SORCS2 to confer risk of bipolar disorder, schizophrenia and attention deficithyperactivity disorder. Here we report that hippocampal N-methyl-D-aspartate receptor-dependent synaptic plasticity is eliminated in SorCS2-deficient mice. This defect was traced to the ability of SorCS2 to form complexes with the neurotrophin receptor p75(NTR), required for pro-brain-derived neurotrophic factor (BDNF) to induce long-term depression, and with the BDNF receptor tyrosine kinase TrkB to elicit long-term potentiation. Although the interaction with p75(NTR) was static, SorCS2 bound to TrkB in an activitydependent manner to facilitate its translocation to postsynaptic densities for synaptic tagging and maintenance of synaptic potentiation. Neurons lacking SorCS2 failed to respond to BDNF by TrkB autophosphorylation, and activation of downstream signaling cascades, impacting neurite outgrowth and spine formation. Accordingly, Sorcs2(-/-) mice displayed impaired formation of long-term memory, increased risk taking and stimulus seeking behavior, enhanced susceptibility to stress and impaired prepulse inhibition. Our results identify SorCS2 as an indispensable coreceptor for p75(NTR) and TrkB in hippocampal neurons and suggest SORCS2 as the link between proBDNF/BDNF signaling and mental disorders.
  •  
8.
  • Abelev, B., et al. (author)
  • Charged jet cross sections and properties in proton-proton collisions at root s=7 TeV
  • 2015
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 91:11
  • Journal article (peer-reviewed)abstract
    • The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at center-of-mass energy root s = 7 TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the midrapidity region using the sequential recombination k(T) and anti-k(T) as well as the SISCone jet finding algorithms with several resolution parameters in the range R = 0.2-0.6. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum (p(T)) interval 20 < p(T)(jet,ch) < 100 GeV/c. They are also consistent with prior measurements carried out at the LHC by the ATLAS Collaboration. The jet charged particle multiplicity rises monotonically with increasing jet p(T), in qualitative agreement with prior observations at lower energies. The transverse profiles of leading jets are investigated using radial momentum density distributions as well as distributions of the average radius containing 80% (< R-80 >) of the reconstructed jet p(T). The fragmentation of leading jets with R = 0.4 using scaled p(T) spectra of the jet constituents is studied. The measurements are compared to model calculations from event generators (PYTHIA, PHOJET, HERWIG). The measured radial density distributions and < R-80 > distributions are well described by the PYTHIA model (tune Perugia-2011). The fragmentation distributions are better described by HERWIG.
  •  
9.
  • Abelev, B., et al. (author)
  • Elliptic flow of identified hadrons in Pb-Pb collisions at root(NN)-N-s=2.76 Tev
  • 2015
  • In: Journal of High Energy Physics. - 1029-8479. ; :6
  • Journal article (peer-reviewed)abstract
    • The elliptic flow coefficient (v(2)) of identified particles in Pb-Pb collisions at root s(NN) = 2.76 TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of |Delta eta| > 0.9 between the identified hadron under study and the reference particles. The v (2) is reported for pi(+/-), K-+/-, K-S(0), p+(p) over bar, phi, Lambda+(Lambda) over bar, Xi+(Xi) over bar (+) and Omega(-)+(Omega) over bar (+) in several collision centralities. In the low transverse momentum (p(T)) region, p(T) < 3 GeV/c, v(2)(p(T)) exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for pi (+/-) and the combined K-+/- and K-S(0) results, are described fairly well by hydrodynamic calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the v(2)(p(T)) for p+(p) over bar, phi, Lambda+(Lambda) over bar, Xi+(Xi) over bar (+). For transverse momentum values larger than about 3 GeV/c, particles tend to group according to their type, i.e. mesons and baryons. The present measurements exhibit deviations from the number of constituent quark (NCQ) scaling at the level of +/- 20% for p(T) > 3 GeV/c.
  •  
10.
  • Abelev, B., et al. (author)
  • Inclusive photon production at forward rapidities in proton-proton collisions at root s=0.9, 2.76 and 7 TeV
  • 2015
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 75:4
  • Journal article (peer-reviewed)abstract
    • The multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities (2.3 < eta < 3.9) in proton-proton collisions at three center-of-mass energies, root s = 0.9, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2 +/- 0.3% (stat) +/- 8.8% (sys) and 61.2 +/- 0.3% (stat) +/- 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. Limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 119

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view