SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bokhari Muhammad Hamza) "

Search: WFRF:(Bokhari Muhammad Hamza)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bokhari, Muhammad Hamza, et al. (author)
  • Isothermal microcalorimetry measures UCP1-mediated thermogenesis in mature brite adipocytes
  • 2021
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1
  • Journal article (peer-reviewed)abstract
    • The activation of thermogenesis in adipose tissue has emerged as an important target for the development of novel anti-obesity therapies. Using multi-well isothermal microcalorimetry, we have demonstrated that mature murine brown and brite adipocytes produce quantifiable heat upon β3-AR stimulation, independently of any anaerobic mechanisms. Additionally, in brite adipocytes lacking UCP1 protein, β3-AR stimulation still induces heat production, albeit to a much lower extent than in their wildtype counterparts, suggesting that UCP1 is an essential component of adrenergic induced thermogenesis in murine brite adipocytes exvivo. Similarly, we could observe an increase in heat production in human-derived adipocytes (hMADS) upon β-AR stimulation. Collectively, these results establish the use of isothermal microcalorimetry as a sensitive and accurate technique for measuring thermogenic responses in intact mature brite adipocytes from murine and human origin.
  •  
2.
  • de Jong, Jasper M. A., et al. (author)
  • Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice
  • 2019
  • In: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:8, s. 830-843
  • Journal article (peer-reviewed)abstract
    • Human and rodent brown adipose tissues (BAT) appear morphologically and molecularly different. Here we compare human BAT with both classical brown and brite/beige adipose tissues of 'physiologically humanized' mice: middle-aged mice living under conditions approaching human thermal and nutritional conditions, that is, prolonged exposure to thermoneutral temperature (approximately 30 degrees C) and to an energy-rich (high-fat, high-sugar) diet. We find that the morphological, cellular and molecular characteristics (both marker and adipose-selective gene expression) of classical brown fat, but not of brite/beige fat, of these physiologically humanized mice are notably similar to human BAT. We also demonstrate, both in silico and experimentally, that in physiologically humanized mice only classical BAT possesses a high thermogenic potential. These observations suggest that classical rodent BAT is the tissue of choice for translational studies aimed at recruiting human BAT to counteract the development of obesity and its comorbidities.
  •  
3.
  • Dehvari, Nodi, et al. (author)
  • The metabolic effects of mirabegron are mediated primarily by beta(3)-adrenoceptors
  • 2020
  • In: Pharmacology Research & Perspectives. - : Wiley. - 2052-1707. ; 8:5
  • Journal article (peer-reviewed)abstract
    • The beta(3)-adrenoceptor agonist mirabegron is approved for use for overactive bladder and has been purported to be useful in the treatment of obesity-related metabolic diseases in humans, including those involving disturbances of glucose homeostasis. We investigated the effect of mirabegron on glucose homeostasis with in vitro and in vivo models, focusing on its selectivity at beta-adrenoceptors, ability to cause browning of white adipocytes, and the role of UCP1 in glucose homeostasis. In mouse brown, white, and brite adipocytes, mirabegron-mediated effects were examined on cyclic AMP, UCP1 mRNA, [H-3]-2-deoxyglucose uptake, cellular glycolysis, and O(2)consumption. Mirabegron increased cyclic AMP levels, UCP1 mRNA content, glucose uptake, and cellular glycolysis in brown adipocytes, and these effects were either absent or reduced in white adipocytes. In brite adipocytes, mirabegron increased cyclic AMP levels and UCP1 mRNA content resulting in increased UCP1-mediated oxygen consumption, glucose uptake, and cellular glycolysis. The metabolic effects of mirabegron in both brown and brite adipocytes were primarily due to actions at beta(3)-adrenoceptors as they were largely absent in adipocytes derived from beta(3)-adrenoceptor knockout mice. In vivo, mirabegron increased whole body oxygen consumption, glucose uptake into brown and inguinal white adipose tissue, and improved glucose tolerance, all effects that required the presence of the beta(3)-adrenoceptor. Furthermore, in UCP1 knockout mice, the effects of mirabegron on glucose tolerance were attenuated. Thus, mirabegron had effects on cellular metabolism in adipocytes that improved glucose handling in vivo, and were primarily due to actions at the beta(3)-adrenoceptor.
  •  
4.
  • Olsen, Jessica M., et al. (author)
  • Acute β-adrenoceptor mediated glucose clearance in brown adipose tissue; a distinct pathway independent of functional insulin signaling
  • 2019
  • In: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 30, s. 240-249
  • Journal article (peer-reviewed)abstract
    • Objective: β-adrenoceptor mediated activation of brown adipose tissue (BAT) has been associated with improvements in metabolic health in models of type 2 diabetes and obesity due to its unique ability to increase whole body energy expenditure, and rate of glucose and free fatty acid disposal. While the thermogenic arm of this phenomenon has been studied in great detail, the underlying mechanisms involved in β-adrenoceptor mediated glucose uptake in BAT are relatively understudied. As β-adrenoceptor agonist administration results in increased hepatic gluconeogenesis that can consequently result in secondary pancreatic insulin release, there is uncertainty regarding the importance of insulin and the subsequent activation of its downstream effectors in mediating β-adrenoceptor stimulated glucose uptake in BAT. Therefore, in this study, we made an effort to discriminate between the two pathways and address whether the insulin signaling pathway is dispensable for the effects of β-adrenoceptor activation on glucose uptake in BAT.Methods: Using a specific inhibitor of phosphoinositide 3-kinase α (PI3Kα), which effectively inhibits the insulin signaling pathway, we examined the effects of various β-adrenoceptor agonists, including the physiological endogenous agonist norepinephrine on glucose uptake and respiration in mouse brown adipocytes in vitro and on glucose clearance in mice in vivo.Results: PI3Kα inhibition in mouse primary brown adipocytes in vitro, did not inhibit β-adrenoceptor stimulated glucose uptake, GLUT1 synthesis, GLUT1 translocation or respiration. Furthermore, β-adrenoceptor mediated glucose clearance in vivo did not require insulin or Akt activation but was attenuated upon administration of a β3-adrenoceptor antagonist.Conclusions: We conclude that the β-adrenergic pathway is still functionally intact upon the inhibition of PI3Kα, showing that the activation of downstream insulin effectors is not required for the acute effects of β-adrenoceptor agonists on glucose homeostasis or thermogenesis.
  •  
5.
  • Zouhar, Petr, et al. (author)
  • UCP1-independent glucose-lowering effect of leptin in type 1 diabetes : only in conditions of hypoleptinemia
  • 2020
  • In: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 318:1, s. E72-E86
  • Journal article (peer-reviewed)abstract
    • The possibility to use leptin therapeutically for lowering glucose levels in patients with type 1 diabetes has attracted interest. However, earlier animal models of type 1 diabetes are severely catabolic with very low endogenous leptin levels, unlike most patients with diabetes. Here, we aim to test glucose-lowering effects of leptin in novel, more human-like murine models. We examined the glucose-lowering potential of leptin in diabetic models of two types: streptozotocin-treated mice and mice treated with the insulin receptor antagonist S961. To prevent hypoleptinemia, we used combinations of thermoneutral temperature and high-fat feeding. Leptin fully normalized hyperglycemia in standard chow-fed streptozotocin-treated diabetic mice. However, more humanized physiological conditions (high-fat diets or thermoneutral temperatures) that increased adiposity- and thus also leptin level-sin the diabetic mice abrogated the effects of leptin, i.e., the mice developed leptin resistance also in this respect. The glucose-lowering effect of leptin was not dependent on the presence of the uncoupling protein-1 and was not associated with alterations in plasma insulin, insulin-like growth factor 1, food intake or corticosterone but fully correlated with decreased plasma glucagon levels and gluconeogenesis. An important implication of these observations is that the therapeutic potential of leptin as an additional treatment in patients with type 1 diabetes is probably limited. This is because such patients are treated with insulin and do not display low leptin levels. Thus, the potential for a glucose-lowering effect of leptin would already have been attained with standard insulin therapy, and further effects on blood glucose level through additional leptin cannot be anticipated.
  •  
6.
  • Åslund, Alice, et al. (author)
  • Myosin 1c : A novel regulator of glucose uptake in brown adipocytes
  • 2021
  • In: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 53
  • Journal article (peer-reviewed)abstract
    • Objective: The potential of brown adipose tissue (BAT) to influence energy homeostasis in animals and humans is encouraging as this tissue can increase fatty acid and glucose utilization to produce heat through uncoupling protein 1 (UCP1), but the actual mechanism of how the cell regulates glucose uptake is not fully understood. Myosin 1c (Myo1c) is an unconventional motor protein involved in several cellular processes, including insulin-mediated glucose uptake via GLUT4 vesicle fusion in white adipocytes, but its role in glucose uptake in BAT has not previously been investigated.Methods: Using the specific inhibitor pentachloropseudilin (PClP), a neutralizing antibody assay, and siRNA, we examined the role of Myo1c in mechanisms leading to glucose uptake both in vitro in isolated mouse primary adipocytes and in vivo in mice.Results: Our results show that inhibition of Myo1c removes insulin-stimulated glucose uptake in white adipocytes, while inducing glucose uptake in brown adipocytes, independent of GLUT4, by increasing the expression, translation, and translocation of GLUT1 to the plasma membrane. Inhibition of Myo1c leads to the activation of PKA and downstream substrates p38 and ATF-2, which are known to be involved in the expression of β-adrenergic genes.Conclusions: Myo1c is a PKA repressor and regulates glucose uptake into BAT.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view