SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bonazzi P.) "

Search: WFRF:(Bonazzi P.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Charles-Orszag, A, et al. (author)
  • Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting
  • 2018
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 4450-
  • Journal article (peer-reviewed)abstract
    • The shape of cellular membranes is highly regulated by a set of conserved mechanisms that can be manipulated by bacterial pathogens to infect cells. Remodeling of the plasma membrane of endothelial cells by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying mechanisms are unclear. Here we show that plasma membrane remodeling occurs independently of F-actin, along meningococcal type IV pili fibers, by a physical mechanism that we term ‘one-dimensional’ membrane wetting. We provide a theoretical model that describes the physical basis of one-dimensional wetting and show that this mechanism occurs in model membranes interacting with nanofibers, and in human cells interacting with extracellular matrix meshworks. We propose one-dimensional wetting as a new general principle driving the interaction of cells with their environment at the nanoscale that is diverted by meningococci during infection.
  •  
2.
  •  
3.
  • Holtstam, Dan, 1963-, et al. (author)
  • Kesebolite-(Ce), CeCa2Mn(AsO4) SiO3 (3), a New REE-Bearing Arsenosilicate Mineral from the Kesebol Mine, angstrom mal, Vastra Gotaland, Sweden
  • 2020
  • In: Minerals. - : MDPI AG. - 2075-163X. ; 10:4
  • Journal article (peer-reviewed)abstract
    • Kesebolite-(Ce), ideal formula CeCa2Mn(AsO4)[SiO3](3), is a new mineral (IMA No. 2019-097) recovered from mine dumps at the Kesebol Mn-(Fe-Cu) deposit in Vastra Gotaland, Sweden. It occurs with rhodonite, baryte, quartz, calcite, talc, andradite, rhodochrosite, K-feldspar, hematite, gasparite-(Ce), chernovite-(Y) and ferriakasakaite-(Ce). It forms mostly euhedral crystals, with lengthwise striation. The mineral is dark grayish-brown to brown, translucent, with light brown streak. It is optically biaxial (+), with weak pleochroism, and n(calc) = 1.74. H = 5-6 and VHN100 = 825. Fair cleavage is observed on {100}. The calculated density is 3.998(5) gcm(-3). Kesebolite-(Ce) is monoclinic, P2(1)/c, with unit-cell parameters from X-ray single-crystal diffraction data: a = 6.7382(3), b = 13.0368(6), c = 12.0958(6) angstrom, beta = 98.578(2)degrees, and V = 1050.66(9) angstrom(3), with Z = 4. Strongest Bragg peaks in the X-ray powder pattern are: [I(%), d(angstrom) (hkl)] 100, 3.114 (20-2); 92, 2.924 (140); 84, 3.138 (041); 72, 2.908 (014); 57, 3.228 (210); 48, 2.856 (042); 48, 3.002 (132). The unique crystal structure was solved and refined to R1 = 4.6%. It consists of 6-periodic single silicate chains along (001); these are interconnected to infinite (010) strings of alternating, corner-sharing MnO6 and AsO4 polyhedra, altogether forming a trellis-like framework parallel to (100).
  •  
4.
  • Karlsson, Andreas, 1986-, et al. (author)
  • Adding complexity to the garnet supergroup: monteneveite, Ca3Sb5+2(Fe3+2Fe2+)O12, a new mineral from the Monteneve mine, Bolzano Province, Italy
  • 2020
  • In: European Journal of Mineralogy. - : Copernicus GmbH. - 0935-1221 .- 1617-4011. ; 32:1, s. 77-87
  • Journal article (peer-reviewed)abstract
    • Monteneveite, ideally Ca3Sb5+2(Fe3+2Fe2+)O12, is a new member of the garnet supergroup (IMA 2018-060). The mineral was discovered in a small specimen belonging to the Swedish Museum of Natural History coming from the now abandoned Monteneve Pb-Zn mine in Passiria Valley, Bolzano Province, Alto Adige (South Tyrol), Italy. The specimen consists of mainly magnetite, sphalerite, tetrahedrite-(Fe) and oxycalcioroméite. Monteneveite occurs as black, subhedral crystals with adamantine lustre. They are equidimensional and up to 400 μm in size, with a subconchoidal fracture. Monteneveite is opaque, grey in reflected light, and isotropic under crossed polars. Measured reflectance values (%) at the four COM wavelengths are 12.6 (470 nm), 12.0 (546 nm), 11.6 (589 nm) and 11.4 (650 nm). The Vickers hardness (VHN100/ is 1141 kgmm-2, corresponding to H D 6:5-7, and the calculated density is 4.72(1) g cm-3. A mean of 10 electron microprobe analyses gave (wt %) CaO 23.67, FeO 3.75, Fe2O3 29.54, Sb2O5 39.81, SnO2 2.22, ZnO 2.29, MgO 0.15, MnO 0.03 and CoO 0.03. The crystal chemical formula calculated on the basis of a total of eight cations and 12 anions, and taking into account the available structural and spectroscopic data, is (Ca2:97Mg0:03)6D3:00 (Sb5+1.73Sn4+0.10Fe3+0.17)6D2.00(Fe3+2.43Fe2+0.37Zn0:20)6D3:00O12. The most significant chemical variations encountered in the sample are related to a substitution of the type Y Sn4CCZFe3CY Sb5CCZFe2C. Mössbauer data obtained at RT and 77K indicate the presence of tetrahedrally coordinated Fe2C. Raman spectroscopy demonstrates that there is no measurable hydrogarnet component in monteneveite. The six strongest Bragg peaks in the powder X-ray diffraction pattern are [d (Å), I (%), (hkl)]: 4.45, 100, (220); 3.147, 60, (400); 2.814, 40, (420); 2.571, 80, (422); 1.993, 40, (620); 1.683, 60, (642). Monteneveite is cubic, space group Ia-3d, with a D 12:6093(2) Å, V D 2004:8(1)Å3, and Z D 8. The crystal structure was refined up to R1 D 0:0197 for 305 reflections with Fo 4.Fo/ and 19 parameters. Monteneveite is related to the other Ca-, Sb- and Fe-bearing, nominally Si-free members of the bitikleite group, but it differs in that it is the only known garnet species with mixed trivalent and divalent cations (2 V 1) at the tetrahedral Z site. Textural and mineralogical evidence suggests that monteneveite formed during peak metamorphism (at ca. 600 C) during partial breakdown of tetrahedrite-(Fe) by reactions with carbonate, under relatively oxidizing conditions. The mineral is named after the type locality, the Monteneve (Schneeberg) mine. © Author(s) 2020.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view