SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bonner S) "

Search: WFRF:(Bonner S)

  • Result 1-10 of 36
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  • Bakker, M. K., et al. (author)
  • Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors
  • 2020
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:12, s. 1303-1313
  • Journal article (peer-reviewed)abstract
    • Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits. Cross-ancestry genome-wide association analyses in individuals of European and East Asian ancestry identify 11 new risk loci for intracranial aneurysms and highlight a polygenic architecture explaining a substantial fraction of disease heritability.
  •  
6.
  •  
7.
  • Fresard, Laure, et al. (author)
  • Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts
  • 2019
  • In: Nature Medicine. - : NATURE PUBLISHING GROUP. - 1078-8956 .- 1546-170X. ; 25:6, s. 911-919
  • Journal article (peer-reviewed)abstract
    • It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene(1). The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches(2-5). For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases(6-8). This includes muscle biopsies from patients with undiagnosed rare muscle disorders(6,9), and cultured fibroblasts from patients with mitochondrial disorders(7). However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
  •  
8.
  • MacDougall, Andrew S., et al. (author)
  • Widening global variability in grassland biomass since the 1980s
  • 2024
  • In: Nature Ecology & Evolution. - : Springer Nature. - 2397-334X.
  • Journal article (peer-reviewed)abstract
    • Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to −34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.
  •  
9.
  • Adeva, B, et al. (author)
  • Large enhancement of deuteron polarization with frequency modulated microwaves
  • 1996
  • In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT. - : ELSEVIER SCIENCE BV. - 0168-9002. ; 372:3, s. 339-343
  • Journal article (other academic/artistic)abstract
    • We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liter polarized target using the method of dynamic nuclear polarization. This target was used during a deep
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view