SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bosch Danielle G. M.) "

Search: WFRF:(Bosch Danielle G. M.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2019
  • Journal article (peer-reviewed)
  •  
2.
  • Blanton, Michael R., et al. (author)
  • Sloan Digital Sky Survey IV : Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
  • 2017
  • In: Astronomical Journal. - : IOP Publishing Ltd. - 0004-6256 .- 1538-3881. ; 154:1
  • Journal article (peer-reviewed)abstract
    • We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and. high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z similar to 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z similar to 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs. and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the. Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.
  •  
3.
  • Liu, Yangfan P., et al. (author)
  • Putative digenic inheritance of heterozygous RP1L1 and C2orf71 null mutations in syndromic retinal dystrophy
  • 2017
  • In: Ophthalmic Genetics. - Philadelphia, USA : Taylor & Francis. - 1381-6810 .- 1744-5094. ; 38:2, s. 127-132
  • Journal article (peer-reviewed)abstract
    • Background: Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration and can occur in non-syndromic and syndromic forms. Syndromic RP is accompanied by other symptoms such as intellectual disability, hearing loss, or congenital abnormalities. Both forms are known to exhibit complex genetic interactions that can modulate the penetrance and expressivity of the phenotype.Materials and methods: In an individual with atypical RP, hearing loss, ataxia and cerebellar atrophy, whole exome sequencing was performed. The candidate pathogenic variants were tested by developing an in vivo zebrafish model and assaying for retinal and cerebellar integrity.Results: Exome sequencing revealed a complex heterozygous protein-truncating mutation in RP1L1, p.[(Lys111Glnfs*27; Gln2373*)], and a heterozygous nonsense mutation in C2orf71, p.(Ser512*). Mutations in both genes have previously been implicated in autosomal recessive non-syndromic RP, raising the possibility of a digenic model in this family. Functional testing in a zebrafish model for two key phenotypes of the affected person showed that the combinatorial suppression of rp1l1 and c2orf71l induced discrete pathology in terms of reduction of eye size with concomitant loss of rhodopsin in the photoreceptors, and disorganization of the cerebellum.Conclusions: We propose that the combination of heterozygous loss-of-function mutations in these genes drives syndromic retinal dystrophy, likely through the genetic interaction of at least two loci. Haploinsufficiency at each of these loci is insufficient to induce overt pathology.
  •  
4.
  • Galosi, Serena, et al. (author)
  • De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus
  • 2022
  • In: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 145:1, s. 208-223
  • Journal article (peer-reviewed)abstract
    • Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy, and movement disorder. We evaluated a large cohort of patients (n=25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor, and ataxia. Later in the disease course they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration, and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibers and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.
  •  
5.
  • Tracewska-Siemiątkowska, Anna, et al. (author)
  • An Expanded Multi-Organ Disease Phenotype Associated with Mutations in YARS
  • 2017
  • In: Genes. - Basel, Switzerland : MDPI AG. - 2073-4425. ; 8:12
  • Journal article (peer-reviewed)abstract
    • Whole exome sequence analysis was performed in a Swedish mother-father-affected proband trio with a phenotype characterized by progressive retinal degeneration with congenital nystagmus, profound congenital hearing impairment, primary amenorrhea, agenesis of the corpus callosum, and liver disease. A homozygous variant c.806T > C, p.(F269S) in the tyrosyl-tRNA synthetase gene (YARS) was the only identified candidate variant consistent with autosomal recessive inheritance. Mutations in YARS have previously been associated with both autosomal dominant Charcot-Marie-Tooth syndrome and a recently reported autosomal recessive multiorgan disease. Herein, we propose that mutations in YARS underlie another clinical phenotype adding a second variant of the disease, including retinitis pigmentosa and deafness, to the spectrum of YARS-associated disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5
Type of publication
journal article (5)
Type of content
peer-reviewed (5)
Author/Editor
Galbany, Lluís (1)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Slosar, Anze (1)
Kelly, Ryan (1)
show more...
Li, Ying (1)
Moore, Matthew D. (1)
Kjellström, Ulrika (1)
Andréasson, Sten (1)
Sun, Jing (1)
Li, Cheng (1)
Liu, Fang (1)
Zhang, Yao (1)
Zhou, Xu (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Abolfathi, Bela (1)
Aguado, D. S. (1)
Holtzman, Jon A. (1)
Anders, Friedrich (1)
Anderson, Scott F. (1)
Aragon-Salamanca, Al ... (1)
Argudo-Fernandez, Ma ... (1)
Armengaud, Eric (1)
Aubourg, Eric (1)
Avila-Reese, Vladimi ... (1)
Badenes, Carles (1)
Bailey, Stephen (1)
Barger, Kathleen A. (1)
Barrera-Ballesteros, ... (1)
Bartosz, Curtis (1)
Bates, Dominic (1)
Baumgarten, Falk (1)
Bautista, Julian (1)
Beaton, Rachael (1)
Beers, Timothy C. (1)
Belfiore, Francesco (1)
Bender, Chad F. (1)
Bernardi, Mariangela (1)
Bershady, Matthew A. (1)
Beutler, Florian (1)
Bird, Jonathan C. (1)
Bizyaev, Dmitry (1)
Blanc, Guillermo A. (1)
Blanton, Michael R. (1)
Blomqvist, Michael (1)
Bolton, Adam S. (1)
Boquien, Mederic (1)
show less...
University
Lund University (3)
Örebro University (2)
University of Gothenburg (1)
Uppsala University (1)
Halmstad University (1)
Stockholm University (1)
show more...
Malmö University (1)
Chalmers University of Technology (1)
Karolinska Institutet (1)
show less...
Language
English (5)
Research subject (UKÄ/SCB)
Medical and Health Sciences (4)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view