SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bouchal J.) "

Search: WFRF:(Bouchal J.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Bouchal, Johannes M., 1979- (author)
  • Reconciling the stratigraphy and depositional history of the Lycian orogen-top basins, SW Anatolia
  • 2019
  • In: Palaeobiodiversity and Palaeoenvironments. - Heidelberg : Springer Science and Business Media LLC. - 1867-1594 .- 1867-1608. ; 99, s. 551-570
  • Journal article (peer-reviewed)abstract
    • Terrestrial fossil records from the SW Anatolian basins are crucial both for regional correlations and palaeoenvironmental reconstructions. By reassessing biostratigraphic constraints and incorporating new fossil data, we calibrated and reconstructed the late Neogene and Quaternary palaeoenvironments within a regional palaeogeographical framework. The culmination of the Taurides in SW Anatolia was followed by a regional crustal extension from the late Tortonian onwards that created a broad array of NE-trending orogen-top basins with synchronic associations of alluvial fan, fluvial and lacustrine deposits. The terrestrial basins are superimposed on the upper Burdigalian marine units with a c. 7 myr of hiatus that corresponds to a shift from regional shortening to extension. The initial infill of these basins is documented by a transition from marginal alluvial fans and axial fluvial systems into central shallow-perennial lakes coinciding with a climatic shift from warm/humid to arid conditions. The basal alluvial fan deposits abound in fossil macro-mammals of an early Turolian (MN11–12; late Tortonian) age. The Pliocene epoch in the region was punctuated by subhumid/humid conditions resulting in a rise of local base levels and expansion of lakes as evidenced by marsh-swamp deposits containing diverse fossilmammal assemblages indicating late Ruscinian (lateMN15; late Zanclean) age. A second pulse of extension, accompanied by regional climatic  changes, prompted subsequent deepening of the lakes as manifested by thick and laterally extensive carbonate successions. These lakes, which prevailed c. 1 myr, later shrank due to renewed progradation of alluvial fans and eventually filled up and dried out, reflected by marsh-swamp deposits at the top of a complete lacustrine succession that contains diverse micro-mammal assemblages indicating a latest Villanyian (MN17; Gelasian) age. A third pulse of tectonic reorganisation and associated extension dissected the basins into their present-day configuration from the early Pleistocene onwards under warm/humid climatic conditions. The new age data provide means to correlate deposits across various basins in the region that help to place the basin development into a regional tectonic framework, which can be attributed to the consequence of the well-articulated regional phenomena of slab-tear/detachmentinduced uplift followed by crustal extension and basin formation (late Tortonian), the outward extension of the Aegean arc (early Pliocene) and eventually accompanied by westward extrusion of the Anatolian Plate (early Pleistocene).
  •  
6.
  • Woutersen, A., et al. (author)
  • The evolutionary history of the Central Asian steppe-desert taxon Nitraria (Nitrariaceae) as revealed by integration of fossil pollen morphology and molecular data
  • 2023
  • In: Botanical Journal of the Linnean Society. - : Oxford University Press (OUP). - 0024-4074 .- 1095-8339. ; 202:2, s. 195-214
  • Journal article (peer-reviewed)abstract
    • The transition from a greenhouse to an icehouse world at the Eocene-Oligocene Transition (EOT) coincided with a large decrease of pollen from the steppe-adapted genus Nitraria. This genus, now common along the Mediterranean coast, Asia and Australia, has a proposed coastal origin and a geographically widespread fossil record. Here we investigated the evolution, taxonomic diversity and morphological disparity of Nitraria throughout the Cenozoic by integrating extant taxa and fossil palynological morphotypes into a unified phylogenetic framework based on both DNA sequences and pollen morphological data. We present the oldest fossil pollen grain of Nitraria, at least 53 Myr old. This fossil was found in Central Asian deposits, providing new evidence for its origin in this area. We found that the EOT is an evolutionary bottleneck for Nitraria, coinciding with retreat of the proto-Paratethys Sea, a major global cooling event and a turnover in Central Asian steppe vegetation. We infer the crown age of modern Nitraria spp. to be significantly younger (Miocene) than previously estimated (Palaeocene). The diversity trajectory of Nitraria inferred from extant-only taxa differs markedly from one that also considers extinct taxa. Our study demonstrates it is therefore critical to apply an integrative approach to fully understand the plant evolutionary history of Nitrariaceae.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view