SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bourgaud Frederic) "

Search: WFRF:(Bourgaud Frederic)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Horn, Armin, et al. (author)
  • Natural Products from Bryophytes : From Basic Biology to Biotechnological Applications
  • 2021
  • In: Critical Reviews in Plant Sciences. - : Informa UK Limited. - 0735-2689 .- 1549-7836. ; 40:3, s. 191-217
  • Journal article (peer-reviewed)abstract
    • Natural products from plants have served mankind in a wide range of applications, such as medicines, perfumes, or flavoring agents. For this reason, synthesis, regulation and function of plant-derived chemicals, as well as the evolution of metabolic diversity, has attracted researchers all around the world. In particular, vascular plants have been subject to such analyses due to prevalent characteristics such as appearance, fragrance, and ecological settings. In contrast, bryophytes, constituting the second largest group of plants in terms of species number, have been mostly overlooked in this regard, potentially due to their seemingly tiny, simple and obscure nature. However, the identification of highly interesting chemicals from bryophytes with potential for biotechnological exploitation is changing this perception. Bryophytes offer a high degree of biochemical complexity, as a consequence of their ecological and genetic diversification, which enable them to prosper in various, often very harsh habitats. The number of bioactive compounds isolated from bryophytes is growing rapidly. The rapidly increasing wealth of bryophyte genetics opens doors to functional and comparative genomics approaches, including disentangling of the biosynthesis of potentially interesting chemicals, mining for novel gene families and tracing the evolutionary history of metabolic pathways. Throughout the last decades, the moss Physcomitrella (Physcomitrium patens) has moved from being a model plant together with Marchantia polymorpha in fundamental biology into an attractive host for the production of biotechnologically relevant compounds such as biopharmaceuticals. In the future, bryophytes like the moss P. patens might also be attractive candidates for the production of novel bryophyte-derived chemicals of commercial interest. This review provides a comprehensive overview of natural product research in bryophytes from different perspectives together with biotechnological advances throughout the last decade.
  •  
2.
  • Miguel, Sissi, et al. (author)
  • A GDSL lipase-like from Ipomoea batatas catalyzes efficient production of 3,5-diCQA when expressed in Pichia pastoris
  • 2020
  • In: Communications Biology. - : Springer Nature. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • The synthesis of 3,5-dicaffeoylquinic acid (3,5-DiCQA) has attracted the interest of many researchers for more than 30 years. Recently, enzymes belonging to the BAHD acyltransferase family were shown to mediate its synthesis, albeit with notably low efficiency. In this study, a new enzyme belonging to the GDSL lipase-like family was identified and proven to be able to transform chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA, CGA) in 3,5-DiCQA with a conversion rate of more than 60%. The enzyme has been produced in different expression systems but has only been shown to be active when transiently synthesized in Nicotiana benthamiana or stably expressed in Pichia pastoris. The synthesis of the molecule could be performed in vitro but also by a bioconversion approach beginning from pure 5-CQA or from green coffee bean extract, thereby paving the road for producing it on an industrial scale. Miguel et al. identify a new enzyme belonging to the GDSL lipase-like family that is involved in the final stage of transformation of 5-CQA into 3,5-diCQA. This enzyme is able to realize an efficient transformation by over 60%, making the transformation process a valuable technological tool that can be easily transferred on an industrial scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view