SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bouten Willem) "

Search: WFRF:(Bouten Willem)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dokter, Adriaan M., et al. (author)
  • Twilight ascents by common swifts, Apus apus, at dawn and dusk: acquisition of orientation cues?
  • 2013
  • In: Animal Behaviour. - : Elsevier BV. - 1095-8282 .- 0003-3472. ; 85:3, s. 545-552
  • Journal article (peer-reviewed)abstract
    • Common swifts are specialist flyers spending most of their life aloft, including night-time periods when this species roosts on the wing. Nocturnal roosting is preceded by a vertical ascent in twilight conditions towards altitudes of up to 2.5 km, behaviour previously explained as flight altitude selection for sleeping. We examined the nocturnal flight behaviour of swifts, as uniquely identified by a Doppler weather radar in central Netherlands using continuous measurements during two consecutive breeding seasons. Common swifts performed twilight ascents not only at dusk but also at dawn, which casts new light on the purpose of these ascents. Dusk and dawn ascents were mirror images of each other when time-referenced to the moment of sunset and sunrise, suggesting that the acquisition of twilight-specific light-based cues plays an important role in the progression of the ascents. Ascent height was well explained by the altitude of the 280 K isotherm, and was not significantly related to wind, cloud base height, humidity or the presence of nocturnal insects. We hypothesize that swifts profile the state of the atmospheric boundary layer during twilight ascents and/or attempt to maximize their perceptual range for visual access to distant horizontal landmarks, including surrounding weather. We compare twilight profiling by swifts with vertical twilight movements observed in other taxa, proposed to be related to orientation and navigation. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
  •  
2.
  • Gauld, Jethro G., et al. (author)
  • Hotspots in the grid : Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa
  • 2022
  • In: Journal of Applied Ecology. - : John Wiley & Sons. - 0021-8901 .- 1365-2664. ; 59:6, s. 1496-1512
  • Journal article (peer-reviewed)abstract
    • Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero carbon energy. We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species' specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5 x 5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines. Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey. Synthesis and applications. We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts.
  •  
3.
  • Vansteelant, Wouter M.G., et al. (author)
  • Western Marsh Harriers Circus aeruginosus from nearby breeding areas migrate along comparable loops, but on contrasting schedules in the West African–Eurasian flyway
  • 2020
  • In: Journal of Ornithology. - : Springer Science and Business Media LLC. - 2193-7192 .- 2193-7206. ; 161:4, s. 953-965
  • Journal article (peer-reviewed)abstract
    • Much of our knowledge about migratory behaviour comes from single-population tracking studies. Some such studies had a considerable impact on migration research at large. However, it is often unclear how representative such studies are for other populations, even of the same species. We compared migration corridors and schedules of GPS-tracked adult Western Marsh Harriers (Circus aeruginosus) from two nearby breeding areas within the West African–Eurasian flyway: the Low Countries (LC, N = 6) and southern Sweden (SW, N = 4). Assuming the migration patterns revealed by decade-old satellite-tracking of SW harriers are representative for the species, we expected LC harriers to make a narrow loop migration involving a western spring detour out of Africa, but according to an earlier schedule tuned to the earlier onset of spring in the Low Countries. In autumn, LC harriers migrated significantly further west than SW harriers all the way to their common non-breeding range. In spring, both groups detoured westward across the Sahara, as expected, and diverged towards their breeding areas after reaching mainland Europe. LC harriers migrated slightly earlier than SW harriers in autumn. However, LC harriers unexpectedly left their non-breeding sites up to a month before SW harriers, after which they made long stop-overs in northwest Africa. Late-departing SW harriers forewent these stop-overs, and thus caught up with LC harriers in northwest Africa, so that both groups reached their breeding areas simultaneously. While we anticipated strong overlap between LC and SW migration corridors in spring, we failed to anticipate the earlier and more variable spring departures of LC harriers. Early spring departures did not result in earlier arrivals by LC harriers. Instead, we suspect they departed early to escape faster deteriorating foraging conditions at their non-breeding sites. Such environmental modulation of migratory behaviour may complicate generalization of migration patterns in other birds.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view