SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bowler C.) "

Search: WFRF:(Bowler C.)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bryant, J. M., et al. (author)
  • Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium
  • 2016
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 354:6313, s. 751-757
  • Journal article (peer-reviewed)abstract
    • Lung infections with Mycobacterium abscessus, a species of multidrug-resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF), in whom M. abscessus accelerates inflammatory lung damage, leading to increased morbidity and mortality. Previously, M. abscessus was thought to be independently acquired by susceptible individuals from the environment. However, using whole-genome analysis of a global collection of clinical isolates, we show that the majority of M. abscessus infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones that have spread globally. We demonstrate that these clones are associated with worse clinical outcomes, show increased virulence in cell-based and mouse infection models, and thus represent an urgent international infection challenge.
  •  
2.
  • Abreu, A., et al. (author)
  • Priorities for ocean microbiome research
  • 2022
  • In: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276. ; 7:7, s. 937-947
  • Journal article (peer-reviewed)abstract
    • Studying the ocean microbiome can inform international policies related to ocean governance, tackling climate change, ocean acidification and pollution, and can help promote achievement of multiple Sustainable Development Goals. Microbial communities have essential roles in ocean ecology and planetary health. Microbes participate in nutrient cycles, remove huge quantities of carbon dioxide from the air and support ocean food webs. The taxonomic and functional diversity of the global ocean microbiome has been revealed by technological advances in sampling, DNA sequencing and bioinformatics. A better understanding of the ocean microbiome could underpin strategies to address environmental and societal challenges, including achievement of multiple Sustainable Development Goals way beyond SDG 14 'life below water'. We propose a set of priorities for understanding and protecting the ocean microbiome, which include delineating interactions between microbiota, sustainably applying resources from oceanic microorganisms and creating policy- and funder-friendly ocean education resources, and discuss how to achieve these ambitious goals.
  •  
3.
  • Hinkley, Sasha, et al. (author)
  • The JWST Early Release Science Program for the Direct Imaging and Spectroscopy of Exoplanetary Systems
  • 2022
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1039
  • Journal article (peer-reviewed)abstract
    • The direct characterization of exoplanetary systems with high-contrast imaging is among the highest priorities for the broader exoplanet community. As large space missions will be necessary for detecting and characterizing exo-Earth twins, developing the techniques and technology for direct imaging of exoplanets is a driving focus for the community. For the first time, JWST will directly observe extrasolar planets at mid-infrared wavelengths beyond 5 μm, deliver detailed spectroscopy revealing much more precise chemical abundances and atmospheric conditions, and provide sensitivity to analogs of our solar system ice-giant planets at wide orbital separations, an entirely new class of exoplanet. However, in order to maximize the scientific output over the lifetime of the mission, an exquisite understanding of the instrumental performance of JWST is needed as early in the mission as possible. In this paper, we describe our 55 hr Early Release Science Program that will utilize all four JWST instruments to extend the characterization of planetary-mass companions to ∼15 μm as well as image a circumstellar disk in the mid-infrared with unprecedented sensitivity. Our program will also assess the performance of the observatory in the key modes expected to be commonly used for exoplanet direct imaging and spectroscopy, optimize data calibration and processing, and generate representative data sets that will enable a broad user base to effectively plan for general observing programs in future Cycles.
  •  
4.
  •  
5.
  • Sakornsakolpat, Phuwanat, et al. (author)
  • Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations
  • 2019
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 494-505
  • Journal article (peer-reviewed)abstract
    • Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality worldwide. Genetic risk loci provide new insights into disease pathogenesis. We performed a genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and additional studies from the International COPD Genetics Consortium. We identified 82 loci associated with P < 5 x 10-8; 47 of these were previously described in association with either COPD or population-based measures of lung function. Of the remaining 35 new loci, 13 were associated with lung function in 79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we identified functional enrichment of COPD risk loci in lung tissue, smooth muscle, and several lung cell types. We found 14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered into groups based on associations with quantitative imaging features and comorbidities. Our analyses provide further support for the genetic susceptibility and heterogeneity of COPD.
  •  
6.
  • Bowler, D. E., et al. (author)
  • Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes
  • 2020
  • In: People and Nature. - : Wiley. - 2575-8314. ; 2:2, s. 380-394
  • Journal article (peer-reviewed)abstract
    • Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined. We compiled global gridded datasets on climate change, land-use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world. We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo-Pacific with high climate change and high fishing). We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers. Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world. Abstrakt Der Klimawandel und andere anthropogene Faktoren, die die biologische Vielfalt verandern, betreffen nicht alle Teile der Erde in gleicher Weise. Wahrend unsere Kenntnisse zu jedem einzelnen Gefahrdungsfaktor standig wachsen, ist unser Verstandnis zu den raumlichen Beziehungen zwischen den verschiedenen Faktoren und ihr Zusammenwirken noch sehr mangelhaft. Das betrifft z.B. auch die Unterschiede zwischen terrestrischen und marinen Lebensraumen, die sehr unterschiedlichen Bedrohungen ausgesetzt sein konnen, selbst wenn sie eng benachbart sind. In der vorliegenden Studie haben wir globale Datensatze uber Klimawandel, Landnutzung, Ressourcenausbeutung, Umweltverschmutzung, biologische Invasionen und Bevolkerungsdichte zusammengestellt. Mit Hilfe multivariater Statistiken haben wir die raumlichen Beziehungen zwischen diesen Ursachen des globalen Biodiversitatswandels und deren Kombinationen untersucht, um deren Einfluss auf verschiedene Regionen der Welt zu charakterisieren. Insbesondere in den terrestrischen Regionen wirken die genannten Gefahrdungsfaktoren haufig in der gleichen Richtung, vor allem solche, die zum Teil besonders hohe Belastungen darstellen. Regionen mit starker ausgepragtem Klimawandel sind tendenziell solche Gebiete, in denen die Gefahrdung durch andere Faktoren eher geringer ist, wie z.B. in der Tundra und im borealen Nadelwald, die stark vom Klimawandel, aber weniger von hoher Nutzungsintensitat und Verschmutzung betroffen sind. Dagegen treten in den Meeresregionen gegenteilige Muster auf, wo z.B. im Indopazifik ein sehr ausgepragter Klimawandel einer hoher Ressourcenausbeutung durch Fischerei zusammenfallt. Die Regionen der Welt lassen sich in Klassen unterschiedlicher Interaktionen und Intensitaten dieser anthropogenen Gefahrungsfaktoren unterteilen. Diese insgesamt 11 verschiedene Faktorenklassen konnen nun dazu verwendet werden, Auswirkungen auf Biodiversitat zu untersuchen und die Gefahrdungs-Hotspots zu identifizieren. Diese Hotspots sind diejenigen gro ss raumigen Meeres- und Festlandsregionen, in denen prioritar Naturschutzma ss nahmen angewendet werden mussen, um den Auswirkungen des anthropogenen Biodiversitatswandels entgegenzutreten. A free Plain Language Summary can be found within the Supporting Information of this article. A free Plain Language Summary can be found within the Supporting Information of this article.
  •  
7.
  • Delmont, T. O., et al. (author)
  • Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean
  • 2022
  • In: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 16:4, s. 927-936
  • Journal article (peer-reviewed)abstract
    • Biological nitrogen fixation contributes significantly to marine primary productivity. The current view depicts few cyanobacterial diazotrophs as the main marine nitrogen fixers. Here, we used 891 Tara Oceans metagenomes derived from surface waters of five oceans and two seas to generate a manually curated genomic database corresponding to free-living, filamentous, colony-forming, particle-attached, and symbiotic bacterial and archaeal populations. The database provides the genomic content of eight cyanobacterial diazotrophs including a newly discovered population related to known heterocystous symbionts of diatoms, as well as 40 heterotrophic bacterial diazotrophs that considerably expand the known diversity of abundant marine nitrogen fixers. These 48 populations encapsulate 92% of metagenomic signal for known nifH genes in the sunlit ocean, suggesting that the genomic characterization of the most abundant marine diazotrophs may be nearing completion. Newly identified heterotrophic bacterial diazotrophs are widespread, express their nifH genes in situ, and also occur in large planktonic size fractions where they might form aggregates that provide the low-oxygen microenvironments required for nitrogen fixation. Critically, we found heterotrophic bacterial diazotrophs to be more abundant than cyanobacterial diazotrophs in most metagenomes from the open oceans and seas, emphasizing the importance of a wide range of heterotrophic populations in the marine nitrogen balance.
  •  
8.
  • Kjær, Kurt H., et al. (author)
  • A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA
  • 2022
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 612:7939, s. 283-291
  • Journal article (peer-reviewed)abstract
    • Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11–19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view