SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Boyle Julie A.) "

Search: WFRF:(Boyle Julie A.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nelson, Peter T., et al. (author)
  • Limbic-predominant age-related TDP-43 encephalopathy (LATE) : consensus working group report
  • 2019
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 142, s. 1503-1527
  • Research review (peer-reviewed)abstract
    • We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, similar to 25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-beta plaques and tauopathy. Given that the oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
  •  
2.
  • Tobias, Deirdre K, et al. (author)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • In: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Research review (peer-reviewed)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
3.
  • Nelson, Peter T., et al. (author)
  • Reply : LATE to the PART-y
  • 2019
  • In: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 142
  • Journal article (other academic/artistic)
  •  
4.
  • Yu, Lei, et al. (author)
  • Plasma p-tau181 and p-tau217 in discriminating PART, AD and other key neuropathologies in older adults
  • 2023
  • In: Acta Neuropathologica. - 0001-6322. ; 146:1, s. 1-11
  • Journal article (peer-reviewed)abstract
    • We examined whether plasma p-tau181 and p-tau217 are specific biomarkers of pathologically confirmed Alzheimer’s disease (AD). In particular, we investigated the utility of plasma p-tau for differentiating AD from primary age-related tauopathy (PART), as well as AD with mixed pathologies. Data came from 269 older adults who participated in the Religious Orders Study or the Rush Memory and Aging Project. Blood samples were collected during annual clinical evaluations. Participants died and underwent brain autopsy. P-tau181 and p-tau217 were quantified in the plasma samples proximate to death (average interval before death: 1.4 years) using Lilly-developed MSD immunoassays. Uniform neuropathologic evaluations assessed AD, PART, and other common degenerative and cerebrovascular conditions. Plasma p-tau217 was more strongly correlated with brain β-amyloid and paired helical filament tau (PHFtau) tangles than p-tau181. Both p-tau markers were associated with greater odds of AD, but p-tau217 had higher accuracy (area under the ROC curve (AUC): 0.83) than p-tau181 (AUC: 0.76). Plasma p-tau markers were almost exclusively associated with AD pathologic indices with the exception of cerebral amyloid angiopathy. Compared to p-tau181, p-tau217 showed a higher AUC (0.82 versus 0.74) in differentiating AD from PART. For either p-tau, we did not observe a level difference between individuals with AD alone and those with mixed AD pathologies. In summary, plasma p-tau181and p-tau217 were specifically associated with AD pathological changes. Further, our data provide initial evidence that p-tau217 may be able to differentiate between AD and PART in individuals with comparable burdens of tau tangle pathology. These results demonstrate the specificity of p-tau217 for AD, supporting its use to identify patients suitable for anti-AD therapies including β-amyloid immunotherapies.
  •  
5.
  • Mychaleckyj, Josyf C., et al. (author)
  • HLA genotyping in the international Type 1 Diabetes Genetics Consortium
  • 2010
  • In: Clinical Trials. - : SAGE Publications. - 1740-7753 .- 1740-7745. ; 7:1 suppl., s. 75-87
  • Journal article (peer-reviewed)abstract
    • Background Although human leukocyte antigen (HLA) DQ and DR loci appear to confer the strongest genetic risk for type 1 diabetes, more detailed information is required for other loci within the HLA region to understand causality and stratify additional risk factors. The Type 1 Diabetes Genetics Consortium (T1DGC) study design included high-resolution genotyping of HLA-A, B, C, DRB1, DQ, and DP loci in all affected sibling pair and trio families, and cases and controls, recruited from four networks worldwide, for analysis with clinical phenotypes and immunological markers. Purpose In this article, we present the operational strategy of training, classification, reporting, and quality control of HLA genotyping in four laboratories on three continents over nearly 5 years. Methods Methods to standardize HLA genotyping at eight loci included: central training and initial certification testing; the use of uniform reagents, protocols, instrumentation, and software versions; an automated data transfer; and the use of standardized nomenclature and allele databases. We implemented a rigorous and consistent quality control process, reinforced by repeated workshops, yearly meetings, and telephone conferences. Results A total of 15,246 samples have been HLA genotyped at eight loci to four-digit resolution; an additional 6797 samples have been HLA genotyped at two loci. The genotyping repeat rate decreased significantly over time, with an estimated unresolved Mendelian inconsistency rate of 0.21%. Annual quality control exercises tested 2192 genotypes (4384 alleles) and achieved 99.82% intra-laboratory and 99.68% inter-laboratory concordances. Limitations The chosen genotyping platform was unable to distinguish many allele combinations, which would require further multiple stepwise testing to resolve. For these combinations, a standard allele assignment was agreed upon, allowing further analysis if required. Conclusions High-resolution HLA genotyping can be performed in multiple laboratories using standard equipment, reagents, protocols, software, and communication to produce consistent and reproducible data with minimal systematic error. Many of the strategies used in this study are generally applicable to other large multi-center studies. Clinical Trials 2010; 7: S75-S87. http://ctj.sagepub.com.
  •  
6.
  • Conde, Lucia, et al. (author)
  • Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:8, s. 661-664
  • Journal article (peer-reviewed)abstract
    • To identify susceptibility loci for non-Hodgkin lymphoma subtypes, we conducted a three-stage genome-wide association study. We identified two variants associated with follicular lymphoma at 6p21.32 (rs10484561, combined P = 1.12 x 10(-29) and rs7755224, combined P = 2.00 x 10(-19); r(2) = 1.0), supporting the idea that major histocompatibility complex genetic variation influences follicular lymphoma susceptibility. We also found confirmatory evidence of a previously reported association between chronic lymphocytic leukemia/small lymphocytic lymphoma and rs735665 (combined P = 4.24 x 10(-9)).
  •  
7.
  • Boyle, Julie A., et al. (author)
  • The Human Brain Distinguishes between Single Odorants and Binary Mixtures
  • 2009
  • In: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 19:1, s. 66-71
  • Journal article (peer-reviewed)abstract
    • Single odors are processed differently from odor mixtures in the cortex of rodents. We investigated whether single and binary odor mixtures activate different regions also in the human brain. We analyzed data from positron emission tomography scans using pyridine, citral, and 5 mixtures of pyridine and citral in proportions varying from 10/90 to 90/10, with 50/50 being the most impure. Comparing mixtures with single odorants gave activation in the left cingulate and right parietal and superior frontal cortices and bilateral activation in the anterior and lateral orbitofrontal cortices. We also found that brain activity in the lateral orbitofrontal cortex (OFC) increased with odorant impurity, whereas the anterior OFC was activated for binary odor mixtures and deactivated for single components. We conclude that binary odor mixtures and their individual components are processed differently by the human brain. The lateral portion of the OFC responds to mixture impurity in a graded fashion, whereas the anterior portion acts like an on-off detector of odor mixtures.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view