SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Braga Roberto) "

Search: WFRF:(Braga Roberto)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Antonioli, Roberto P., et al. (author)
  • Mixed Coherent and Non-Coherent Transmission for Multi-CPU Cell-Free Systems
  • 2023
  • In: ICC 2023 - IEEE International Conference on Communications: Sustainable Communications for Renaissance. - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 1068-1073
  • Conference paper (peer-reviewed)abstract
    • Existing works on cell-free systems consider either coherent or non-coherent downlink data transmission and a network deployment with a single central processing unit (CPU). While it is known that coherent transmission outperforms non-coherent transmission when assuming unlimited fronthaul links, the former requires a perfect timing synchronization, which is practically not viable over a large network. Furthermore, relying on a single CPU for geographically large cell-free networks is not scalable. Thus, to realize the expected gains of cell-free systems in practice, alternative transmission strategies for realistic multi-CPU cell-free systems are required. Therefore, this paper proposes a novel downlink data transmission scheme that combines and generalizes the existing coherent and non-coherent transmissions. The proposed transmission scheme, named mixed transmission, works based on the realistic assumption that only the access points (APs) controlled by a same CPU are synchronized, and thus transmit in a coherent fashion, while APs from different CPUs require no synchronism and transmit in a non-coherent manner. We also propose extensions of existing clustering algorithms for multi-CPU cell-free systems with mixed transmission. Simulation results show that the combination of the proposed clustering algorithms with mixed transmission have the potential to perform close to the ideal coherent transmission.
  •  
3.
  • Antonioli, Roberto Pinto, et al. (author)
  • On the Energy Efficiency of Cell-Free Systems With Limited Fronthauls : Is Coherent Transmission Always the Best Alternative?
  • 2022
  • In: IEEE Transactions on Wireless Communications. - : Institute of Electrical and Electronics Engineers (IEEE). - 1536-1276 .- 1558-2248. ; 21:10, s. 8729-8743
  • Journal article (peer-reviewed)abstract
    • Existing works concluded that coherent transmission outperforms non-coherent transmission in the downlink of cell-free systems when the fronthaul links have unlimited capacity. Since the capacity of the fronthaul links of cell-free networks is typically limited, in this paper we ask the question whether this conclusion holds under more realistic assumptions on the fronthaul capacity. To answer this question, we study and compare the performance of these transmission strategies by formulating novel energy efficiency (EE) maximization problems for both strategies, where we explicitly consider realistic fronthaul capacity and power consumption constraints. Despite the non-convexity of these problems, we derive closed-form equations to find suboptimal solutions of both problems using a unified framework that combines successive convex approximation and the Dinkelbach algorithm. Numerical results show that the performance of coherent transmission is severely impacted by limited fronthaul capacities, power consumption on the fronthaul links, user-centric cluster size and the number of antennas at the access points, such that in many cases non-coherent transmission achieves higher EE than coherent transmission. Based on these results, we provide deployment guidelines on when to use coherent or non-coherent transmission to maximize the EE of cell-free systems with limited fronthauls.
  •  
4.
  • Braga, Iran M., et al. (author)
  • Efficient Battery Usage in Wireless-Powered Cell-Free Systems With Self-Energy Recycling
  • 2023
  • In: IEEE Transactions on Vehicular Technology. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9545 .- 1939-9359. ; 72:5, s. 6856-6861
  • Journal article (peer-reviewed)abstract
    • This article investigates wireless-powered cell-free systems, in which the users send their uplink data signal while simultaneously harvesting energy from network nodes and user terminals - including the transmitting user terminal itself - by performing self-energy recycling. In this rather general setting, a closed-form lower bound of the amount of harvested energy and the achieved signal-to-interference-plus-noise ratio expressions are derived. Then, to improve the energy efficiency, we formulate the problem of minimizing the users' battery energy usage while satisfying minimum data rate requirements. Due to the non-convexity of the problem, a novel alternating optimization algorithm is proposed, and its proof of convergence is provided. Finally, numerical results show that the proposed method is more efficient than a state-of-art algorithm in terms of battery energy usage and outage rate.
  •  
5.
  • Braga Jr, Iran Mesquita, et al. (author)
  • Decentralized Joint Pilot and Data Power Control Based on Deep Reinforcement Learning for the Uplink of Cell-Free Systems
  • 2023
  • In: IEEE Transactions on Vehicular Technology. - : Institute of Electrical and Electronics Engineers (IEEE). - 0018-9545 .- 1939-9359. ; 72:1, s. 957-972
  • Journal article (peer-reviewed)abstract
    • While the problem of jointly controlling the pilot-and-data power in cell-based systems has been extensively studied, this problem is difficult to solve in cell-free systems due to two reasons. First, both the large- and small-scale fading are markedly different between a served user and the multiple serving access points. Second, due to the user-centric architecture, there is a need for decentralized algorithms that scale well in the cell-free environment. In this work, we study the impact of joint pilot-and-data power control and receive filter design in the uplink of cell-free systems. The problem is formulated as optimization tasks considering two different objectives: 1) maximization of the minimum spectral efficiency (SE) and 2) maximization of the total SE. Since these problems are non-convex, we resort to successive convex approximation and geometric programming to obtain a local optimal centralized solution for benchmarking purposes. We also propose a decentralized solution based on actor-critic deep reinforcement learning, in which each user acts as an agent to locally obtain the best policy relying on minimum information exchange. Practical signaling aspects are provided for such a decentralized solution. Finally, numerical results indicate that the decentralized solution performs very close to the centralized one and outperforms state-of-the-art algorithms in terms of minimum SE and total system SE.
  •  
6.
  • Braga Jr, Iran M., et al. (author)
  • Joint Pilot and Data Power Control Optimization in the Uplink of User-Centric Cell-Free Systems
  • 2022
  • In: IEEE Communications Letters. - : Institute of Electrical and Electronics Engineers (IEEE). - 1089-7798 .- 1558-2558. ; 26:2, s. 399-403
  • Journal article (peer-reviewed)abstract
    • Joint pilot and data power control (JPDPC) is known to have a large impact on both the overall spectral/energy efficiency and fairness of cell-based systems. However, the impact of JPDPC on the inherent spectral/energy efficiency and fairness trade-off in cell-free (CF) systems is much less understood. In this letter, considering pilot contamination, user-centric clustering and multi-antenna access points, we formulate novel JPDPC problems in CF systems as distinct optimization tasks, whose objectives are maximizing the minimum spectral efficiency (SE), maximizing the total SE and maximizing the product of the individual signal-to-interference-plus-noise ratios. Since these problems are non-convex, we solve them by combining successive convex approximation and geometric programming. To the best of our knowledge, this is the first letter analyzing and optimizing JPDPC in user-centric CF systems. Our results indicate that JPDPC allows users to save more energy than the disjoint optimization of pilot and data powers when maximizing the minimum SE, while showing that JPDPC plays a crucial role in balancing between SE and fairness also in CF systems.
  •  
7.
  • Braga Jr, Iran Mesquita, et al. (author)
  • Joint Resource Allocation and Transceiver Design for Sum-Rate Maximization Under Latency Constraints in Multicell MU-MIMO Systems
  • 2021
  • In: IEEE Transactions on Communications. - : Institute of Electrical and Electronics Engineers (IEEE). - 0090-6778 .- 1558-0857. ; 69:7, s. 1-1
  • Journal article (peer-reviewed)abstract
    • Due to the continuous advancements of orthogonal frequency division multiplexing (OFDM) and multiple antenna techniques, multiuser multiple input multiple output (MU-MIMO) OFDM is a key enabler of both fourth and fifth generation networks. In this paper, we consider the problem of weighted sum-rate maximization under latency constraints in finite buffer multicell MU-MIMO OFDM systems. Unlike previous works, the optimization variables include the transceiver beamforming vectors, the scheduled packet size and the resources in the frequency and power domains. This problem is motivated by the observation that multicell MU-MIMO OFDM systems serve multiple quality of service classes and the system performance depends critically on both the transceiver design and the scheduling algorithm. Since this problem is non-convex, we resort to the max-plus queuing method and successive convex approximation. We propose both centralized and decentralized solutions, in which practical design aspects, such as signaling overhead, are considered. Finally, we compare the proposed framework with state-of-the-art algorithms in relevant scenarios, assuming a realistic channel model with space, frequency and time correlations. Numerical results indicate that our design provides significant gains over designs based on the wide-spread saturated buffers assumption, while also outperforming algorithms that consider a finite-buffer model. Due to the continuous advancements of orthogonal frequency division multiplexing (OFDM) and multiple antenna techniques, multiuser multiple input multiple output (MU-MIMO) OFDM is a key enabler of both fourth and fifth generation networks. In this paper, we consider the problem of weighted sum-rate maximization under latency constraints in finite buffer multicell MU-MIMO OFDM systems. Unlike previous works, the optimization variables include the transceiver beamforming vectors, the scheduled packet size and the resources in the frequency and power domains. This problem is motivated by the observation that multicell MU-MIMO OFDM systems serve multiple quality of service classes and the system performance depends critically on both the transceiver design and the scheduling algorithm. Since this problem is non-convex, we resort to the max-plus queuing method and successive convex approximation. We propose both centralized and decentralized solutions, in which practical design aspects, such as signaling overhead, are considered. Finally, we compare the proposed framework with state-of-the-art algorithms in relevant scenarios, assuming a realistic channel model with space, frequency and time correlations. Numerical results indicate that our design provides significant gains over designs based on the widespread saturated buffers assumption, while also outperforming algorithms that consider a finite-buffer model.
  •  
8.
  • Saraiva, Juno, V, et al. (author)
  • A Network-Assisted Game-Theoretic Design to Power Control in Autoregressive Fading Channels
  • 2022
  • In: IEEE Communications Letters. - : Institute of Electrical and Electronics Engineers (IEEE). - 1089-7798 .- 1558-2558. ; 26:7, s. 1663-1667
  • Journal article (peer-reviewed)abstract
    • Several previous works have proposed game-theoretic approaches to controlling the pilot and data power levels in the uplink of both single and multi-cell multi-user multiple input multiple output (MU-MIMO) systems. Unfortunately, the vast majority of existing works design these power control schemes under the assumption that the wireless channels between the mobile terminals and the serving base station are block fading. Meanwhile, several letters have shown that modeling fast fading channels as autoregressive (AR) processes with known or estimated state transition matrices give much more accurate results than those suggested by block fading models. Thus, this letter proposes a game-theoretic approach to controlling the uplink pilot and data power levels in a MU-MIMO system, in which the wireless channels are AR processes with mobile terminal-specific state transition matrices. We find that the proposed approach outperforms a classical cellular path-loss compensating fractional power control scheme and a game-theoretic power control scheme designed for block fading channels.
  •  
9.
  • Soffitta, Paolo, et al. (author)
  • XIPE : the X-ray imaging polarimetry explorer
  • 2013
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 36:3, s. 523-567
  • Journal article (peer-reviewed)abstract
    • X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2-10 keV band in 10(5) s for pointed observations, and 0.6 % for an X10 class solar flare in the 15-35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin x 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 mu s. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut fur extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12
Type of publication
journal article (8)
book chapter (3)
conference paper (1)
Type of content
peer-reviewed (12)
Author/Editor
Fodor, Gabor, 1964- (7)
Larsson, Stefan (4)
Svensson, Måns (3)
Zhang, Yan (1)
Korhonen, Laura (1)
Lindholm, Dan (1)
show more...
Vertessy, Beata G. (1)
Pearce, Mark, 1970- (1)
Axelsson, Magnus (1)
Wang, Mei (1)
Ryde, Felix (1)
Jackson, Miranda (1)
Wang, Xin (1)
Liu, Yang (1)
Kumar, Rakesh (1)
Wang, Dong (1)
Larsson, Josefin (1)
Li, Ke (1)
Liu, Ke (1)
Zhang, Yang (1)
Poutanen, Juri (1)
Nàgy, Péter (1)
Kominami, Eiki (1)
van der Goot, F. Gis ... (1)
Moretti, Elena (1)
Bonaldo, Paolo (1)
Thum, Thomas (1)
Adams, Christopher M (1)
Minucci, Saverio (1)
Vellenga, Edo (1)
Swärd, Karl (1)
Nilsson, Per (1)
De Milito, Angelo (1)
Zhang, Jian (1)
Shukla, Deepak (1)
Kågedal, Katarina (1)
Chen, Guoqiang (1)
Liu, Wei (1)
Cheetham, Michael E. (1)
Sigurdson, Christina ... (1)
Clarke, Robert (1)
Zhang, Fan (1)
Gonzalez-Alegre, Ped ... (1)
Fabian, Andrew C. (1)
Tamagawa, Toru (1)
Jin, Lei (1)
Chen, Qi (1)
Taylor, Mark J. (1)
Romani, Luigina (1)
Wang, Ying (1)
show less...
University
Royal Institute of Technology (8)
Lund University (4)
Umeå University (1)
Stockholm University (1)
Linköping University (1)
Karolinska Institutet (1)
show more...
Swedish University of Agricultural Sciences (1)
show less...
Language
English (11)
Italian (1)
Research subject (UKÄ/SCB)
Engineering and Technology (7)
Social Sciences (3)
Natural sciences (2)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view