SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Braga Tiago) "

Search: WFRF:(Braga Tiago)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Braga, Tiago, et al. (author)
  • Reduction with dithiothreitol causes serglycin-specific defects in secretory granule integrity of bone marrow derived mast cells
  • 2009
  • In: Molecular Immunology. - : Elsevier BV. - 0161-5890 .- 1872-9142. ; 46:3, s. 422-428
  • Journal article (peer-reviewed)abstract
    • Mast cell granule maturation and storage of granule components has previously been shown to be critically dependent on serglycin (SG), a proteoglycan abundantly stored in mast cell secretory granules. The N-terminal portion of serglycin contains a conserved disulfide motif that is similar to motifs found in secretory granule compounds of neuroendocrine cells. Interference with such motifs of neuroendocrine cells with dithiothreitol (DTT) has previously been shown to cause cellular missorting. To investigate the implication for serglycin, serglycin(+/+) and serglycin(-/-) bone marrow derived mast cells (BMMCs) were treated with DTT followed by assessment of proteoglycan synthesis and secretory granule integrity. Treatment of serglycin(+/+) BMMCs with DTT almost completely abolished biosynthetic incorporation of (35)S-sulfate into proteoglycans, caused a dramatic reduction of granular staining with May Grünwald/Giemsa as well as disruption of granule dense core formation as shown by transmission electron microscopy. In addition, the storage of carboxypeptidase A, a major secretory granule compound, was markedly reduced following DTT treatment. In contrast, none of these effects were seen after treatment of SG(-/-) BMMCs with DTT, indicating that they were serglycin-specific. Notably, DTT treated serglycin(+/+) BMMCs showed similar morphology as did the serglycin(-/-) BMMCs. DTT treatment affected neither the viability of the BMMCs nor the mRNA levels for serglycin or carboxypeptidase A. Together, these data indicate that DTT causes dramatic, serglycin-specific effects on mast cell granule. These findings are thus in accordance with a role for the N-terminal disulfide motif in serglycin for regulation of mast cell secretory granule integrity.
  •  
2.
  • Braga, Tiago, et al. (author)
  • Serglycin proteoglycan is required for secretory granule integrity in mucosal mast cells
  • 2007
  • In: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 403:1, s. 49-57
  • Journal article (peer-reviewed)abstract
    • SG (serglycin) PGs (proteoglycans) are strongly implicated in the assembly of MC (mast cell) granules. However, this notion has mainly been on the basis of studies of MCs of the connective tissue subtype, whereas the role of SG PG in mucosal MCs has not been explored. In the present study, we have addressed the latter issue by using mice with an inactivated SG gene. Bone marrow cells were differentiated in vitro into the mucosal MC phenotype, expressing the markers mMCP (mouse MC protease) -1 and -2. Biosynthetic labelling experiments performed on these cells revealed an ~80% reduction of 35SO42− incorporation into PGs recovered from SG−/− cells as compared with SG+/+ counterparts, indicating that SG is the dominating cell-associated PG of mucosal MCs. Moreover, the absence of SG led to defective metachromatic staining of mucosal MCs, both in vivo and in the in vitro-derived mucosal MCs. Ultrastructural analysis showed that granules were present in similar numbers in SG+/+ and SG−/− cells, but that their morphology was markedly affected by the absence of SG, e.g. with electron-dense core formation only seen in SG+/+ granules. Analysis of the MC-specific proteases showed that mMCP-1 and mMCP-7 were completely independent of SG for storage, whereas mMCP-2 showed a partial dependence. In contrast, mMCP-4 and -6, and carboxypeptidase A were strongly dependent on SG for storage. Together, our data indicate that SG PG is of crucial importance for assembly of mature mucosal MC granules, but that the specific dependence on SG for storage varies between individual granule constituents.
  •  
3.
  • Dyczynski, Matheus, et al. (author)
  • Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib
  • 2018
  • In: Cancer Letters. - : Elsevier. - 0304-3835 .- 1872-7980. ; 435, s. 32-43
  • Journal article (peer-reviewed)abstract
    • Resistance to chemotherapy is a challenging problem for treatment of cancer patients and autophagy has been shown to mediate development of resistance. In this study we systematically screened a library of 306 known anti-cancer drugs for their ability to induce autophagy using a cell-based assay. 114 of the drugs were classified as autophagy inducers; for 16 drugs, the cytotoxicity was potentiated by siRNA-mediated knock-down of Atg7 and Vps34. These drugs were further evaluated in breast cancer cell lines for autophagy induction, and two tyrosine kinase inhibitors, Sunitinib and Erlotinib, were selected for further studies. For the pharmacological inhibition of autophagy, we have characterized here a novel highly potent selective inhibitor of Vps34, SB02024. SB02024 blocked autophagy in vitro and reduced xenograft growth of two breast cancer cell lines, MDA-MB-231 and MCF-7, in vivo. Vps34 inhibitor significantly potentiated cytotoxicity of Sunitinib and Erlotinib in MCF-7 and MDA-MB-231 in vitro in monolayer cultures and when grown as multicellular spheroids. Our data suggests that inhibition of autophagy significantly improves sensitivity to Sunitinib and Erlotinib and that Vps34 is a promising therapeutic target for combination strategies in breast cancer.
  •  
4.
  • Gruic, Mirjana, et al. (author)
  • Serglycin-deficient cytotoxic T lymphocytes display defective secretory granule maturation and granzyme B storage
  • 2005
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 280:39, s. 33411-33418
  • Journal article (peer-reviewed)abstract
    • Cytotoxic T lymphocytes eliminate infected and tumor cells mainly by perforin/granzyme-induced apoptosis. Earlier studies suggested that serglycin-proteoglycans form macromolecular complexes with granzymes and perforin in the cytotoxic granule. Serglycin-proteoglycans may also be involved in the delivery of the cytolytic machinery into target cells. We have developed a serglycin-deficient mouse strain, and here we studied the importance of serglycin-proteoglycans for various aspects of cytotoxic T lymphocyte function. 35SO4(2-) radiolabeling of serglycin-deficient cells demonstrated a dramatic reduction of incorporated label as compared with wild type cells, indicating that serglycin is by far the dominating proteoglycan species produced by the cytotoxic T lymphocyte. Moreover, lack of serglycin resulted in impaired ability of cytotoxic T lymphocytes to produce secretory granule of high electron density, although granule of lower electron density were produced both in wild type and serglycin-deficient cells. The serglycin deficiency did not affect the mRNA expression for granzyme A, granzyme B, or perforin. However, the storage of granzyme B, but not granzyme A, Fas ligand, or perforin, was severely defective in serglycin-deficient cells. Serglycin-deficient cells did not display defects in late cytotoxicity toward target cell lines. Taken together, these results point to a key role for serglycin in the storage of granzyme B and for secretory granule maturation but argue against a major role for serglycin in the apoptosis mediated by cytotoxic T lymphocytes.
  •  
5.
  •  
6.
  • Wernersson, Sara, et al. (author)
  • Age-related enlargement of lymphoid tissue and altered leukocyte composition in serglycin-deficient mice
  • 2009
  • In: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 0741-5400 .- 1938-3673. ; 85:3, s. 401-408
  • Journal article (peer-reviewed)abstract
    • Serglycin (SG) is a proteoglycan that is located predominantly in the secretory granules of hematopoietic cells. Previous studies have established a crucial role for SG in promoting the storage of various secretory granule compounds that are of importance in the immune defense system. Here, we show that mice lacking SG spontaneously develop enlargement of multiple lymphoid organs, including the spleen, Peyer's patches (PP), and bronchus-associated lymphoid tissue. In the spleen, the lack of SG resulted in a significant decrease in the proportion of CD4(+) cells as well as an increase of the CD45RC(+) leukocyte population, indicating an expansion of naïve lymphocytes. In the PP, the lack of SG resulted in a general increase in cellularity, without significant alterations in the proportion of individual leukocyte populations. The enlargement of lymphoid tissues was not accompanied by increased serum levels of inflammatory cytokines. The number of mast cells in the peritoneum was not affected by the lack of SG, as judged by surface staining for CD117 (c-kit). However, the intensity of c-kit staining was reduced significantly in SG null animals. Moreover, the number of peritoneal macrophages, defined by morphological criteria and by CD11b staining, was decreased markedly in older, SG-deficient animals. Finally, experiments in which airway inflammation was induced by bacterial LPS revealed a more pronounced inflammatory response in old, SG-deficient as compared with wild-type mice. Taken together, our data show that SG deficiency causes multiple, age-related effects on the lymphoid system.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view