SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brandão Ana D.) "

Search: WFRF:(Brandão Ana D.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Conti, David, V, et al. (author)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Journal article (peer-reviewed)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
2.
  • Wang, Anqi, et al. (author)
  • Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants
  • 2023
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:12, s. 2065-2074
  • Journal article (peer-reviewed)abstract
    • The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
  •  
3.
  • Brandão, Rita D., et al. (author)
  • Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes
  • 2019
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 145:2, s. 401-414
  • Journal article (peer-reviewed)abstract
    • A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.
  •  
4.
  • Leonardo, Diego A., et al. (author)
  • Orientational Ambiguity in Septin Coiled Coils and its Structural Basis
  • 2021
  • In: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836. ; 433:9
  • Journal article (peer-reviewed)abstract
    • Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.
  •  
5.
  • Mueller, Michael, et al. (author)
  • Microstructural, mechanical, and thermo-physical characterization of hypereutectic AlSi40 fabricated by selective laser melting
  • 2019
  • In: Journal of laser applications. - : Laser Institute of America. - 1042-346X .- 1938-1387. ; 31:2
  • Journal article (peer-reviewed)abstract
    • The powder bed additive manufacturing process selective laser melting (SLM) enables designers and engineers to overcome restrictions of conventional manufacturing technologies. The potential of fabricating complex lightweight structures and processing advanced materials is a key feature for enhancing further development of high performance components for space applications. Due to a high specific stiffness and a thermal expansion coefficient very close to electroless nickel, which is an advantageous optical coating material, the hypereutectic aluminum-silicon alloy AlSi40 shows great potential for the manufacturing of optical mirrors for space applications. In prior investigations, Hilpert et al.showed the feasibility to process AlSi40 by SLM [E. Hilpert and S. Risse, Materials Science & Technology Conference and Exhibition MS&T'15, Columbus, Ohio, 4–8 October 2015(Association for Iron & Steel Technology, Warrendale, PA, 2015) and E. Hilpert, “Struktur und Eigenschaften von additiv gefertigten hypereutektischen Aluminum-Siliciumlegierungen,” in Werkstoffwoche 2017, Dresden, Germany, 28 September 2017 (Deutsche Gesellschaft für Materialkunde e.V., Berlin, 2017)]. Nevertheless, in order to qualify this material for space applications, the manufacturing process and fabricated samples need to be thoroughly investigated in terms of microstructural, mechanical, as well as thermo-physical characterization. The authors present results of the SLM process development for manufacturing dense AlSi40 samples with a relative density above 99.50%. The effect of various process parameters, such as hatch distance, preheating, and scanning strategy, on the formation of defects was investigated by destructive [e.g., optical microscopy (OM)] and nondestructive (e.g., computed tomography) testing. In addition, the effect of several thermal post-treatments on the AlSi40 microstructure was profoundly analyzed by multiple methods such as OM, scanning electron microscopy, and energy dispersive x-ray spectroscopy analysis. Moreover, mechanical and thermo-physical testing of manufactured specimens was conducted to provide material characteristics for component design. In conclusion, the determined material properties of AlSi40 samples fabricated by SLM were compared to bulk material properties. The gained knowledge and testing data were evaluated in order to identify correlations and dependencies.
  •  
6.
  • Shen, Ruidan, et al. (author)
  • Insights into the importance of WPD-loop sequence for activity and structure in protein tyrosine phosphatases
  • 2022
  • In: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 13:45, s. 13524-13540
  • Journal article (peer-reviewed)abstract
    • Protein tyrosine phosphatases (PTPs) possess a conserved mobile catalytic loop, the WPD-loop, which brings an aspartic acid into the active site where it acts as an acid/base catalyst. Prior experimental and computational studies, focused on the human enzyme PTP1B and the PTP from Yersinia pestis, YopH, suggested that loop conformational dynamics are important in regulating both catalysis and evolvability. We have generated a chimeric protein in which the WPD-loop of YopH is transposed into PTP1B, and eight chimeras that systematically restored the loop sequence back to native PTP1B. Of these, four chimeras were soluble and were subjected to detailed biochemical and structural characterization, and a computational analysis of their WPD-loop dynamics. The chimeras maintain backbone structural integrity, with somewhat slower rates than either wild-type parent, and show differences in the pH dependency of catalysis, and changes in the effect of Mg2+. The chimeric proteins' WPD-loops differ significantly in their relative stability and rigidity. The time required for interconversion, coupled with electrostatic effects revealed by simulations, likely accounts for the activity differences between chimeras, and relative to the native enzymes. Our results further the understanding of connections between enzyme activity and the dynamics of catalytically important groups, particularly the effects of non-catalytic residues on key conformational equilibria.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view