SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brandelius Angelica) "

Search: WFRF:(Brandelius Angelica)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brandelius, Angelica, et al. (author)
  • dsRNA-induced expression of thymic stromal lymphopoietin (TSLP) in asthmatic epithelial cells is inhibited by a small airway relaxant.
  • 2011
  • In: Pulmonary Pharmacology & Therapeutics. - : Elsevier BV. - 1522-9629 .- 1094-5539. ; 24, s. 59-66
  • Journal article (peer-reviewed)abstract
    • RATIONALE: Thymic Stromal Lymphopoietin (TSLP) is considered a hub cytokine that activates dendritic cells and T-cells producing asthma-like Th(2)-inflammation. Viral stimuli, a major cause of asthma exacerbations, have been shown to induce overexpression of TSLP in asthmatic epithelium. Capsazepine has multiple effects and is of interest because it relaxes human small airways. Here we have explored effects of capsazepine on viral surrogate (dsRNA)-induced TSLP and other cytokines (TNF-alpha, IL-8) in human bronchial epithelial cells (HBEC) from healthy and asthmatic donors. METHODS: HBEC obtained from healthy and asthmatic subjects were grown and stimulated with dsRNA. Cells pre-treated with capsazepine (3-30μM), dexamethasone (0.1-10μM) or an IkappaB-kinase inhibitor (PS1145, 30μM) were also exposed to dsRNA (10μg/ml). Cells and supernatants were harvested for analyses of gene expression (RT-qPCR) and protein production (ELISA,Western blot). RESULTS: dsRNA-induced TSLP, TNF-alpha, and IL-8 in asthmatic and non-asthmatic HBEC. Dexamethasone attenuated gene expression and protein release whereas capsazepine dose-dependently, and similar to a non-relaxant NFkB inhibitor (PS1145), completely inhibited dsRNA-induced TSLP and TNF-alpha in both healthy and asthmatic HBEC. Capsazepine reduced dsRNA-induced IL-8 and it prevented dsRNA-induced loss of the NF-κB repressor protein IkBα. CONCLUSION: Additional to its human small airway relaxant effects we now demonstrate that capsazepine has potent anti-inflammatory effects on viral stimulus-induced cytokines in HBEC from healthy as well as asthmatic donors. Based on these data we suggest that exploration of structure-activity amongst the multifaceted capsazepinoids is warranted in search for compounds of therapeutic value in viral-induced, steroid-resistant asthma.
  •  
2.
  • Brandelius, Angelica, et al. (author)
  • Selective inhibition by simvastatin of IRF3 phosphorylation and TSLP production in dsRNA-challenged bronchial epithelial cells from COPD donors.
  • 2012
  • In: British Journal of Pharmacology. - : Wiley. - 1476-5381 .- 0007-1188.
  • Journal article (peer-reviewed)abstract
    • Background and purpose: Statin treatment may ameliorate viral infection-induced exacerbations of chronic obstructive pulmonary disease (COPD), which exhibit Th2-type bronchial inflammation. Thymic stromal lymphopoietin (TSLP), a hub cytokine switching on Th2-inflammation, is overproduced in viral and dsRNA-stimulated bronchial epithelial cells from COPD donors. Hence, TSLP may be causally involved in exacerbations. This study tests our hypothesis that simvastatin may inhibit dsRNA-induced TSLP. Experimental approach: Epithelial cells, obtained by bronchoscopy from COPD (n=7) and smoker control (n=8) donors, were grown and stimulated with viral infection and danger signal surrogate, dsRNA (10 µg·mL(-1) ). Cells were treated with simvastatin (0.2-5 µg·mL(-1) ), with or without mevalonate (13-26 µg·mL(-1) ), or dexamethasone (1 µg·mL(-1) ) prior to dsRNA. Cytokine expression and production, and transcription factor (IRF3 and NF-κB) activation were determined. Key results: dsRNA induced TSLP, TNFα, CXCL8, and IFNβ. TSLP was overproduced in dsRNA-exposed COPD cells compared to control. Simvastatin, concentration-dependently, but not dexamethasone, inhibited dsRNA-induced TSLP. Unexpectedly, simvastatin acted independent of mevalonate and did not affect dsRNA-induced NF-κB activation nor did it reduce production of TNFα and CXCL8. Instead, simvastatin inhibited dsRNA-induced IRF3 phosphorylation and generation of IFNβ. Conclusions and implications: Independent of mevalonate and NF-κB, previously acknowledged anti-inflammatory mechanisms of pleiotropic statins, simvastatin selectively inhibited dsRNA-induced IRF3 activation and production of TSLP and IFNβ in COPD epithelium. These data provide novel insight into epithelial generation of TSLP and suggest paths to be exploited in drug discovery aimed at inhibiting TSLP-induced pulmonary immunopathology.
  •  
3.
  • Brandelius, Angelica (author)
  • Targeting viral induced TSLP - an airway treatment opportunity
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • Respiratory viral infections cause exacerbations of asthma and COPD that cannot be effectively treated today. Thymic Stromal Lymphopoietin (TSLP) is an upstream epithelial cytokine linking the innate and adaptive immune system. Viral stimuli induce epithelial overexpression of TSLP in asthma and COPD. We hypothesise that TSLP switches on Th2-type inflammation in severe asthma/COPD. A deficient antiviral interferon-response has also been showed in asthmatic epithelium. The aim of this thesis was to study effects of selected compounds on viral induced epithelial TSLP and antiviral proteins. We show that capsazepine, a small airway relaxant, inhibits TSLP induced by the viral infection surrogate dsRNA in human bronchial epithelial cells (HBECs) from asthmatic and healthy donors. Surprisingly, simvastatin, a cholesterol-lowering compound with pleiotrophic effects, inhibits dsRNA-induced IRF3 phosphorylation and TSLP but not NFkB in HBECs from COPD-patients, healthy smokers and asthmatics. TSLP-inhibitory effects of capsazepine and simvastatin are superior to effects produced by the glucocorticoid dexamethasone. However, simvastatin, but not dexamethasone, inhibits antiviral interferon-beta (IFNβ) and IL-32. We developed a method by which repeated topical nasal dsRNA for the first time induces effects in vivo on human respiratory mucosa. We found that IFNβ, IFNλ and IL-32 were upregulated by dsRNA during but not outside birch pollen season. dsRNA challenges were below threshold for TSLP induction. In conclusion, using HBEC we discovered that different classes of compounds were effective inhibitors of viral induced TSLP. With pharmacological tools we discovered that IRF3 phosphorylation is involved in TSLP production meaning also that difficulties arise regarding the aim of inhibiting TSLP without inhibiting interferons. For future studies we devise novel human in vivo methods for study of pharmacology of airway antiviral protein production.
  •  
4.
  •  
5.
  • Calvén, Jenny, et al. (author)
  • Viral Stimuli Trigger Exaggerated Thymic Stromal Lymphopoietin Expression by Chronic Obstructive Pulmonary Disease Epithelium: Role of Endosomal TLR3 and Cytosolic RIG-I-Like Helicases.
  • 2012
  • In: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 4, s. 86-99
  • Journal article (peer-reviewed)abstract
    • Background: Rhinovirus (RV)-induced chronic obstructive pulmonary disease (COPD) exacerbations exhibit TH(2)-like inflammation. We hypothesized that RV-infected bronchial epithelial cells (BEC) overproduce TH(2)-switching hub cytokine, thymic stromal lymphopoietin (TSLP) in COPD. Methods: Primary BEC from healthy (HBEC) and from COPD donors (COPD-BEC) were grown in 12-well plates, infected with RV16 (0.5-5 MOI) or stimulated with agonists for either toll-like receptor (TLR) 3 (dsRNA, 0.1-10 μg/ml) or RIG-I-like helicases (dsRNA-LyoVec, 0.1-10 μg/ml). Cytokine mRNA and protein were determined (RTqPCR; ELISA). Results: dsRNA dose-dependently evoked cytokine gene overproduction of TSLP, CXCL8 and TNF-α in COPD-BEC compared to HBEC. This was confirmed using RV16 infection. IFN-β induction did not differ between COPD-BEC and HBEC. Endosomal TLR3 inhibition by chloroquine dose-dependently inhibited dsRNA-induced TSLP generation and reduced generation of CXCL8, TNF-α, and IFN-β. Stimulation of cytosolic viral sensors (RIG-I-like helicases) with dsRNA-LyoVec increased production of CXCL8, TNF-α, and IFN-β, but not TSLP. Conclusions: Endosomal TLR3-stimulation, by dsRNA or RV16, induces overproduction of TSLP in COPD-BEC. dsRNA- and RV-induced overproduction of TNF-α and CXCL8 involves endosomal TLR3 and cytosolic RIG-I-like helicases and so does the generation of IFN-β in COPD-BEC. RV16 and dsRNA-induced epithelial TSLP may contribute to pathogenic effects at exacerbations and development of COPD.
  •  
6.
  • Mahmutovic Persson, Irma, et al. (author)
  • Capacity of capsazepinoids to relax human small airways and inhibit TLR3-induced TSLP and IFNβ production in diseased bronchial epithelial cells.
  • 2012
  • In: International Immunopharmacology. - : Elsevier BV. - 1878-1705 .- 1567-5769. ; 13:3, s. 292-300
  • Journal article (peer-reviewed)abstract
    • Thymic stromal lymphopoietin (TSLP), an immunomodulating potentially disease-inducing cytokine, is overproduced in TLR3-stimulated bronchial epithelial cells from asthmatic donors whereas production of antiviral IFNβ is deficient. It is of therapeutic interest that capsazepine inhibits epithelial TSLP and relaxes human small airways with similar potencies. However, it is not known if other capsazepine-like compounds share such dual actions. This study explores epithelial anti-TSLP and anti-IFNβ effects of capsazepine and novel capsazepine-like bronchorelaxants. We used primary bronchial epithelial cells from asthmatic and chronic obstructive pulmonary disease (COPD) donors, and human small airways dissected from surgically removed lungs. Seven novel capsazepinoids were about 10 times, and one compound (RES187) >30 times, more potent than capsazepine as relaxants of LTD(4)-contracted small airways. TLR3-induced TSLP, TNFα, CXCL8, and IFNβ mRNA and protein levels were dose-dependently and non-selectively inhibited by capsazepine, equally in cells from asthmatic and COPD donors. The novel compounds, except RES187, reduced TSLP and IFNβ but none are more potent than capsazepine. Only capsazepine consistently inhibited TNFα and CXCL8 production and attenuated TLR3-induced epithelial NF-κB signalling. Hence, the present compounds did not separate between inhibition of TLR3-induced epithelial TSLP and IFNβ, but all compounds, except capsazepine, did separate between the bronchorelaxant and the epithelial immune effects. We conclude that similar mechanisms may be involved in capsazepine-like inhibition of TLR3-induced epithelial TSLP and IFNβ and that these are distinct from mechanisms involved in relaxation of small airways by these compounds.
  •  
7.
  • Mahmutovic Persson, Irma, et al. (author)
  • Increased expression of upstream TH2-cytokines in a mouse model of viral-induced asthma exacerbation.
  • 2016
  • In: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Exacerbations of asthma caused by respiratory viral infections are serious conditions in need of novel treatment. To this end animal models of asthma exacerbations are warranted. We have shown that dsRNA challenges or rhinoviral infection produce exacerbation effects in mice with ovalbumin (OVA)-induced allergic asthma. However, house dust mite (HDM) is a more human asthma-relevant allergen than OVA. We thus hypothesised that dsRNA challenges in mice with HDM-induced experimental asthma would produce important translational features of asthma exacerbations.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view