SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brueckner Frank) "

Search: WFRF:(Brueckner Frank)

  • Result 1-10 of 44
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Moritz, Juliane, et al. (author)
  • Influence of Electron Beam Powder Bed Fusion Process Parameters at Constant Volumetric Energy Density on Surface Topography and Microstructural Homogeneity of a Titanium Aluminide Alloy
  • 2023
  • In: Advanced Engineering Materials. - : John Wiley & Sons. - 1438-1656 .- 1527-2648. ; 25:15
  • Journal article (peer-reviewed)abstract
    • In powder bed fusion additive manufacturing, the volumetric energy density E V is a commonly used parameter to quantify process energy input. However, recent results question the suitability of E V as a design parameter, as varying the contributing parameters may yield different part properties. Herein, beam current, scan velocity, and line offset in electron beam powder bed fusion (PBF-EB) of the titanium aluminide alloy TNM–B1 are systematically varied while maintaining an overall constant E V. The samples are evaluated regarding surface morphology, relative density, microstructure, hardness, and aluminum loss due to evaporation. Moreover, the specimens are subjected to two different heat treatments to obtain fully lamellar (FL) and nearly lamellar (NLγ) microstructures, respectively. With a combination of low beam currents, low-to-intermediate scan velocities, and low line offsets, parts with even surfaces, relative densities above 99.9%, and homogeneous microstructures are achieved. On the other hand, especially high beam currents promote the formation of surface bulges and pronounced aluminum evaporation, resulting in inhomogeneous banded microstructures after heat treatment. The results demonstrate the importance of considering the individual parameters instead of E V in process optimization for PBF-EB.
  •  
2.
  • Moritz, Juliane, et al. (author)
  • Influence of Two-Step Heat Treatments on Microstructure and Mechanical Properties of a β-Solidifying Titanium Aluminide Alloy Fabricated via Electron Beam Powder Bed Fusion
  • 2023
  • In: Advanced Engineering Materials. - : John Wiley & Sons. - 1438-1656 .- 1527-2648. ; 25:2
  • Journal article (peer-reviewed)abstract
    • Additive manufacturing technologies, particularly electron beam powder bed fusion (PBF-EB/M), are becoming increasingly important for the processing of intermetallic titanium aluminides. This study presents the effects of hot isostatic pressing (HIP) and subsequent two-step heat treatments on the microstructure and mechanical properties of the TNM-B1 alloy (Ti–43.5Al–4Nb–1Mo–0.1B) fabricated via PBF-EB/M. Adequate solution heat treatment temperatures allow the adjustment of fully lamellar (FL) and nearly lamellar (NL-β) microstructures. The specimens are characterized by optical microscopy and scanning electron microscopy (SEM), X-ray computed tomography (CT), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD). The mechanical properties at ambient temperatures are evaluated via tensile testing and subsequent fractography. While lack-of-fusion defects are the main causes of failure in the as-built condition, the mechanical properties in the heat-treated conditions are predominantly controlled by the microstructure. The highest ultimate tensile strength is achieved after HIP due to the elimination of lack-of-fusion defects. The results reveal challenges originating from the PBF-EB/M process, for example, local variations in chemical composition due to aluminum evaporation, which in turn affect the microstructures after heat treatment. For designing suitable heat treatment strategies, particular attention should therefore be paid to the microstructural characteristics associated with additive manufacturing.
  •  
3.
  • Moritz, Juliane, et al. (author)
  • Locally Adapted Microstructures in an Additively Manufactured Titanium Aluminide Alloy Through Process Parameter Variation and Heat Treatment
  • 2023
  • In: Advanced Engineering Materials. - : John Wiley & Sons. - 1438-1656 .- 1527-2648. ; 25:2
  • Journal article (peer-reviewed)abstract
    • Electron beam powder bed fusion (PBF-EB/M) has been attracting great research interest as a promising technology for additive manufacturing of titanium aluminide alloys. However, challenges often arise from the process-induced evaporation of aluminum, which is linked to the PBF-EB/M process parameters. This study applies different volumetric energy densities during PBF-EB/M processing to deliberately adjust the aluminum contents in additively manufactured Ti–43.5Al–4Nb–1Mo–0.1B (TNM-B1) samples. The specimens are subsequently subjected to hot isostatic pressing (HIP) and a two-step heat treatment. The influence of process parameter variation and heat treatments on microstructure and defect distribution are investigated using optical and scanning electron microscopy, as well as X-ray computed tomography (CT). Depending on the aluminum content, shifts in the phase transition temperatures can be identified via differential scanning calorimetry (DSC). It is confirmed that the microstructure after heat treatment is strongly linked to the PBF-EB/M parameters and the associated aluminum evaporation. The feasibility of producing locally adapted microstructures within one component through process parameter variation and subsequent heat treatment can be demonstrated. Thus, fully lamellar and nearly lamellar microstructures in two adjacent component areas can be adjusted, respectively.
  •  
4.
  • Brandau, Benedikt, et al. (author)
  • Absorbance determination of a powder bed by high resolution coaxial multispectral imaging in laser powder bed fusion
  • 2024
  • In: Optics and Laser Technology. - : Elsevier. - 0030-3992 .- 1879-2545. ; 168
  • Journal article (peer-reviewed)abstract
    • This study presents an approach for in-situ monitoring of laser powder bed fusion. Using standard laser optics, coaxial high-resolution multispectral images of powder beds are acquired in a pre-objective scanning configuration. A continuous overview image of the entire 114 × 114 mm powder bed can be generated, detecting objects down to 20 µm in diameter with a maximum offset of 22–49 µm. Multispectral information is obtained by capturing images at 6 different wavelengths from 405 nm to 850 nm. This allows in-line determination of the absorbance of the powder bed with a maximum deviation of 2.5% compared to the absorbance spectra of established methods. For the qualification of this method, ray tracing simulations on powder surfaces and tests with 20 different powders have been carried out. These included different particle sizes, aged and oxidized powders.
  •  
5.
  • Brandau, Benedikt, et al. (author)
  • Absorbance study of powder conditions for laser additive manufacturing
  • 2022
  • In: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 216
  • Journal article (peer-reviewed)abstract
    • Absorbance is often used for simulations or validation of process parameters for powder-based laser materials processing. In this work, the absorbance of 39 metal powders for additive manufacturing is determined at 20 laser wavelengths. Different grain sizes and aging states for: steels, aluminum alloys, titanium alloys, Nitinol, high entropy alloy, chromium, copper, brass and iron ore were analyzed. For this purpose, the absorbance spectrum of the powders was determined via a dual-beam spectrometer in the range of λ = 330 - 1560 nm. At the laser wavelengths of λ = 450 nm, 633 nm and 650 nm, the absorbance averaged over all materials was found to increase by a factor of 2.4 up to 3.3 compared to the usual wavelength of λ = 1070 nm, with minimal variations in absorbance between materials. In the investigation of the aged or used powders, a loss of absorbance was detectable. Almost no changes from the point of view of processing aged and new AlSi10Mg powders, is expected for laser sources with λ = 450 nm. The resulting measurements provide a good basis for process parameters for a variety of laser wavelengths and materials, as well as a data set for improved absorbance simulations.
  •  
6.
  • Brandau, Benedikt, et al. (author)
  • Angular dependence of coaxial and quasi-coaxial monitoring systems for process radiation analysis in laser materials processing
  • 2022
  • In: Optics and lasers in engineering. - : Elsevier. - 0143-8166 .- 1873-0302. ; 155
  • Journal article (peer-reviewed)abstract
    • Process monitoring is becoming increasingly important in laser-based manufacturing and is of particular importance in the field of additive manufacturing [e.g. Laser Powder Bed Fusion (LPBF)]. Process monitoring enables a reduction of production costs and a lower time-to-market. Furthermore, the data can be used to create a digital twin of the workpiece. There are already many established processing head-integrated monitoring systems for such applications as the multispectral analysis of process radiation. However, the monitoring of complex signals in systems with F-Theta scanner lenses is very challenging and requires specially adapted optics or measuring sensors.In this paper a potential arrangement for spectroscopy-based process monitoring in pre-objective scanning is presented. The process radiation was monitored using a coaxial and a quasi-coaxial observation system. The measurements were carried out on both a solid and a powder coated sample of 2.4668 (Inconel 718) to show the potential use of these systems in laser-based additive manufacturing. In order to obtain comprehensive data about the process signal, the process zone was analyzed at different angles of incidence (AOI) of the laser using a high-speed camera (HSI) and a spectrometer. The connection between the HSI and the spectral measurements is discussed. The ionization of the material and the formation of a plasma was observed and found to lose intensity as the angle of incidence increases. A model of the system that demonstrates the intensity of the emitted radiation of the plasma was created. It enables the measured values to be corrected. The corrected measurement data can be used to detect impurities or a non-ideal energy input across the entire processing field, which is a move towards robust process monitoring.
  •  
7.
  • Brueckner, Frank, et al. (author)
  • Enhanced manufacturing possibilities using multi-materials in laser metal deposition
  • 2018
  • In: Journal of laser applications. - : American Institute of Physics (AIP). - 1042-346X .- 1938-1387. ; 26:2, s. 10-12
  • Journal article (peer-reviewed)abstract
    • Additive manufacturing (AM) addresses various benefits as the buildup of complex shaped parts, the possibility of functional integration, reduced lead times or the use of difficult machinable materials compared to conventional manufacturing possibilities. Beside these advantages, the use of more than one material in a component would strongly increase the field of applications in typical AM branches as energy, aerospace, or medical technology. By means of multi-material buildups, cost-intensive alloys could be only used in high-loaded areas of the part, whereas the remaining part could be fabricated with cheaper compositions. The selection of combined materials strongly depends on the requested thermophysical but also mechanical properties. Within this contribution, examples (e.g., used in the turbine business) show how alloys can be arranged to fit together, e.g., in terms of a well-chosen coefficient of thermal expansion. As can be seen in nature, the multi-material usage can be characterized by sharp intersections from one material to the other (e.g., in case of a thin corrosion protection), but also by graded structures enabling a smoother material transition (e.g., in case of dissimilar materials which are joined together without defects). The latter is shown for an example from aerospace within this paper. Another possibility is the simultaneous placement of several materials, e.g., hard carbide particles placed in a more ductile matrix composition. These particles can be varied in size (e.g., TiC versus WC). Also the ratio between carbides and matrix alloy can be adjusted depending on its application. Especially, nozzle-based free form fabrication technologies, e.g., laser metal deposition, enable the utilization of more than one material. Within this contribution, possibilities to feed more than one filler material are demonstrated. In addition, results of multi-material processes are shown. Finally, this work focuses on different (potential) applications, mainly on power generation, but also for medical technology or wear resistant components.
  •  
8.
  • Brueckner, Frank, et al. (author)
  • Fabrication of metallic multi-material components using Laser Metal Deposition
  • 2017
  • In: Solid Freeform Fabrication 2017. - : The University of Texas at Austin. ; , s. 2530-2538
  • Conference paper (other academic/artistic)abstract
    • Meanwhile, Laser Metal Deposition (LMD) is a well-known Additive Manufacturing technology used in various industrial branches as energy, tooling or aerospace. It can be used for the fabrication of new components but also repair applications. So far, volume build-ups were mostly carried out with one single material only. However, loading conditions may strongly vary and, hence, the use of more than one material in a component would yield major benefits. By means of multi-material build-ups, cost-intensive alloys could be used in highly-loaded areas of the part, whereas the remaining part could be fabricated with cheaper compositions. The selection of combined materials strongly depends on the requested thermo-physical and mechanical properties. Within this contribution, possibilities of material combinations by LMD and selected examples of beneficial multi-material use are presented.
  •  
9.
  • Brueckner, Frank, et al. (author)
  • Phenomena in multi-material fabrication using laser metal deposition
  • 2019
  • In: Laser 3D Manufacturing VI. - : SPIE - International Society for Optical Engineering.
  • Conference paper (peer-reviewed)abstract
    • Additive Manufacturing (AM) processes as Laser Metal Deposition (LMD) addresses various benefits such as the build-up of complex shaped parts, the possibility of functional integration, reduced lead times or the use of difficult machinable materials compared to conventional manufacturing possibilities. Beside mentioned advantages, the use of more than one material in a component strongly increases the field of applications. Similar to structures in nature, multi-material arrangements can be realized by (I) sharp intersections from one material to the other (e. g. in the case of a thin corrosion protection), (II) graded structures enabling smoother material transitions (e. g. dissimilar materials joined together without defects), (III) composite structures with enclosed particles in a matrix material as well as by (IV) in-situ alloying of different material compositions. Due to varying material properties (e.g. thermo-physical, mechanical, optical), the combination of materials often requires a detailed investigation of occurring process phenomena and well-chosen modifications of the process regimes. Within this paper, (a) the right material feeding as well as powder interaction between various materials in Laser Metal Deposition, (b) the suitable selection of laser wavelengths for different materials, (c) process window adjustments by means of additional sensor equipment, (d) limitations of material combinations as well as (e) results and material characterization of multi-material parts are discussed. Phenomena are discussed by means of exemplary industrial applications, e.g. from the jet engine or medical business. 
  •  
10.
  • Eberle, Sebastian, et al. (author)
  • Additive manufacturing of an AlSi40 mirror coated with electroless nickel for cryogenic space applications
  • 2018
  • In: International Conference on Space Optics—ICSO 2018. - : SPIE - International Society for Optical Engineering.
  • Conference paper (peer-reviewed)abstract
    • Advanced Manufacturing (AM) has the potential to improve existing technologies and applications in terms of performance, light-weighting and costs. In the context of the SME4ALM initiative, launched by DLR and ESA, the company Kampf Telescope Optics GmbH (KTO) in cooperation with the Fraunhofer Institute for Material and Beam Technology (IWS) have assessed the feasibility of AM to build a high-performance optical mirror for space applications. For the assessment of the AM potentials, a mirror design concept for cryogenic instruments for observations in the IR and NIR range was baselined. In a second step, Nickel-Phosphorus (NiP) was selected as optical coating. The combination of coating and mirror material is a primary design driver for optical performance. Both materials must have a very similar CTE as well as be compliant to modern optical manufacturing (diamond turning, polishing). As a promising candidate for NiP coating the AlSi40 was selected for the mirror structure. The potential advantages of AM for optical mirrors in terms of mechanical performance, cost, and manufacturing time were exploited. The achievement of those objectives was / will be demonstrated by:1. verifying AM material properties and manufacturability of AM mirrors by material sample tests and subcomponent tests2. designing AM mirror demonstrator by structural, thermal, and optical performance analysis3. applying and elaborating AM specific design methods (topology optimization, sandwich structures with internal microstructures, monolithic design, etc.)4. manufacturing, assembling, and testing AM mirror demonstrator to verify manufacturability and optical performance5. comparing optical and mechanical performance of the AM mirror demonstrator to a conventional mirror by numerical analysis to exploit potential advantages of AM
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view