SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Burgoyne Hayden) "

Search: WFRF:(Burgoyne Hayden)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Conte, Davide, et al. (author)
  • Advanced concept for a crewed mission to the martian moons
  • 2017
  • In: Acta Astronautica. - : Elsevier. - 0094-5765 .- 1879-2030. ; 139, s. 545-563
  • Journal article (peer-reviewed)abstract
    • This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission. The mission's objectives are to deliver a crew of four astronauts to the surface of Deimos and perform a robotic exploration mission to Phobos. Over the course of the 343 day mission during the years 2031 and 2032, the crew will perform surface excursions, technology demonstrations, In Situ Resource Utilization (ISRU) of the Martian moons, as well as site reconnaissance for future human exploration of Mars. This mission design makes use of an innovative hybrid propulsion concept (chemical and electric) to deliver a relatively low-mass reusable crewed spacecraft (approximately 100 mt) to cis-martian space. The crew makes use of torpor which minimizes launch payload mass. Green technologies are proposed as a stepping stone towards minimum environmental impact space access. The usage of beamed energy to power a grid of decentralized science stations is introduced, allowing for large scale characterization of the Martian environment. The low-thrust outbound and inbound trajectories are computed through the use of a direct method and a multiple shooting algorithm that considers various thrust and coast sequences to arrive at the final body with zero relative velocity. It is shown that the entire mission is rooted within the current NASA technology roadmap, ongoing scientific investments and feasible with an extrapolated NASA Budget. The presented mission won the 2016 Revolutionary Aerospace Systems Concepts - Academic Linkage (RASC-AL) competition.
  •  
2.
  • Conte, Davide, et al. (author)
  • Innovative mars global international exploration (IMaGInE) mission
  • 2016
  • In: AIAA Space and Astronautics Forum and Exposition, SPACE 2016. - Reston, Virginia : American Institute of Aeronautics and Astronautics. - 9781624104275
  • Conference paper (peer-reviewed)abstract
    • This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission whose mission objectives are to deliver a crew of four astronauts to the surface of Deimos and a robotic exploration mission to Phobos for approx-imately 343 days during the years 2031 and 2032, perform surface excursions, technology demonstrations, and In Situ Resource Utilization (ISRU) of the Martian moons as well as site reconnaissance for future human exploration of Mars. This is the winning mis-sion design of the 2016 Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) competition, awarded with the "Best in Theme," "Best Overall," and "Pio-neering Exceptional Achievement Concept Honor (PEACH)" prizes. This competition was sponsored by NIA and NASA
  •  
3.
  • Grulich, Maria, et al. (author)
  • Next - Exploration universal station (NEXUS)
  • 2016
  • In: Proceedings of the International Astronautical Congress, IAC.
  • Conference paper (peer-reviewed)abstract
    •  From July 25 to August 1, 2015 the Space Station Design Workshop (SSDW) was held at the University of Stuttgart in Germany with students coming from around the world. During the SSDW the participants where challenged to develop a concept for a new international platform like the International Space Station (ISS) for future space research. This paper discuss the Preliminary Design Document of the architectural design, deployment strategy and operational phase of NEXUS: the Next EX-ploration Universal Station, an international crewed space platform in cis-lunar space to support the current vision for future deep space exploration. This station is designed to be modular, extensible, sustainable and serves a number of novel applications, including unique research, supporting current and future robotic and human planetary exploration, and providing a platform for international cooperation and commercial development. This space station will be the center of space exploration during its operation and will dramatically enhance the opportunities for every partner to explore the unknown and new locations beyond Low Earth Orbit. The world has successfully collaborated for many years at the ISS. However, the ISS is only currently supported through mid-2020s. The next step is to further the research and exploration done in space and provide an intermediate staging location for missions beyond Earths sphere of influence. NEXUS is located in cis-lunar space, in a halo orbit around the Earth-Moon Libration Point 2 (EML2). While the priorities of potential international partners are extremely varied, NEXUS location enhances and supports the vision of nearly every international space agency and commercial companies. The station offers numerous opportunities for research and technology testing in space and on the Moon. The overall mission architecture is separated into two phases: the construction phase and the operations phase. In order to align with the end of the ISS, the construction will begin in 2024. The construction phase would last 6 years during which the various station modules are sent to EML2 using heavy lift launchers such as the SLS Block 1 and 1B through weak stability boundary trajectories. The station will become fully operational in 2030 and will receive supplies from Earth by using a solar electric tug which would taxi supplies from Earth to NEXUS. NEXUS will be used as an intermediate location for human and robotic missions to explore the Moon, Mars, and other destinations in our Solar System
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view