SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Buttner Mark J) "

Search: WFRF:(Buttner Mark J)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Becher, Paul G., et al. (author)
  • Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal
  • 2020
  • In: Nature Microbiology. - : Springer Science and Business Media LLC. - 2058-5276.
  • Journal article (peer-reviewed)abstract
    • Volatile compounds emitted by bacteria are often sensed by other organisms as odours, but their ecological roles are poorly understood1,2. Well-known examples are the soil-smelling terpenoids geosmin and 2-methylisoborneol (2-MIB)3,4, which humans and various animals sense at extremely low concentrations5,6. The conservation of geosmin biosynthesis genes among virtually all species of Streptomyces bacteria (and genes for the biosynthesis of 2-MIB in about 50%)7,8, suggests that the volatiles provide a selective advantage for these soil microbes. We show, in the present study, that these volatiles mediate interactions of apparent mutual benefit between streptomycetes and springtails (Collembola). In field experiments, springtails were attracted to odours emitted by Streptomyces colonies. Geosmin and 2-MIB in these odours induce electrophysiological responses in the antennae of the model springtail Folsomia candida, which is also attracted to both compounds. Moreover, the genes for geosmin and 2-MIB synthases are under the direct control of sporulation-specific transcription factors, constraining emission of the odorants to sporulating colonies. F. candida feeds on the Streptomyces colonies and disseminates spores both via faecal pellets and through adherence to its hydrophobic cuticle. The results indicate that geosmin and 2-MIB production is an integral part of the sporulation process, completing the Streptomyces life cycle by facilitating dispersal of spores by soil arthropods.
  •  
2.
  • Bush, Matthew J, et al. (author)
  • c-di-GMP signalling and the regulation of developmental transitions in streptomycetes.
  • 2015
  • In: Nature Reviews. Microbiology. - : Springer Science and Business Media LLC. - 1740-1534 .- 1740-1526. ; 13:12, s. 749-760
  • Research review (peer-reviewed)abstract
    • The complex life cycle of streptomycetes involves two distinct filamentous cell forms: the growing (or vegetative) hyphae and the reproductive (or aerial) hyphae, which differentiate into long chains of spores. Until recently, little was known about the signalling pathways that regulate the developmental transitions leading to sporulation. In this Review, we discuss important new insights into these pathways that have led to the emergence of a coherent regulatory network, focusing on the erection of aerial hyphae and the synchronous cell division event that produces dozens of unigenomic spores. In particular, we highlight the role of cyclic di-GMP (c-di-GMP) in controlling the initiation of development, and the role of the master regulator BldD in mediating c-di-GMP signalling.
  •  
3.
  • Hempel, Antje, et al. (author)
  • The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces.
  • 2012
  • In: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 109:35, s. 2371-2379
  • Journal article (peer-reviewed)abstract
    • In cells that exhibit apical growth, mechanisms that regulate cell polarity are crucial for determination of cellular shape and for the adaptation of growth to intrinsic and extrinsic cues. Broadly conserved pathways control cell polarity in eukaryotes, but less is known about polarly growing prokaryotes. An evolutionarily ancient form of apical growth is found in the filamentous bacteria Streptomyces, and is directed by a polarisome-like complex involving the essential protein DivIVA. We report here that this bacterial polarization machinery is regulated by a eukaryotic-type Ser/Thr protein kinase, AfsK, which localizes to hyphal tips and phosphorylates DivIVA. During normal growth, AfsK regulates hyphal branching by modulating branch-site selection and some aspect of the underlying polarisome-splitting mechanism that controls branching of Streptomyces hyphae. Further, AfsK is activated by signals generated by the arrest of cell wall synthesis and directly communicates this to the polarisome by hyperphosphorylating DivIVA. Induction of high levels of DivIVA phosphorylation by using a constitutively active mutant AfsK causes disassembly of apical polarisomes, followed by establishment of multiple hyphal branches elsewhere in the cell, revealing a profound impact of this kinase on growth polarity. The function of AfsK is reminiscent of the phoshorylation of polarity proteins and polarisome components by Ser/Thr protein kinases in eukaryotes.
  •  
4.
  • Saalbach, Gerhard, et al. (author)
  • Determination of Phosphorylation Sites in the DivIVA Cytoskeletal Protein of Streptomyces coelicolor by Targeted LC-MS/MS
  • 2013
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:9, s. 4187-4192
  • Journal article (peer-reviewed)abstract
    • The filamentous bacterium Streptomyces coelicolor modulates polar growth and branching by phosphorylating the cytoskeletal protein DivIVA. Previous MALDI-TOF analysis of DivIVA showed that a large 7.2 kDa tryptic peptide was multiply phosphorylated. To aid localization of the phosphorylation sites, we introduced additional tryptic cleavage sites into DivIVA, and the resulting phosphopeptides were analyzed by LC-MS/MS. Phosphopeptide isomers could be separated chromatographically, but because of overlapping elution and spectrum quality, site assignment by standard software tools was ambiguous. Because fragment ions carrying the phosphate group are essential for confident localization, large numbers of spectra were collected using targeted LC-MS/MS, and a special script was developed for plotting the elution of site-determining fragments from those spectra under the XIC of the parent ions. Where multiple phosphopeptide isomers were present, the elution of the site-determining y-ions perfectly coincided with the elution of the corresponding phosphopeptide isomer. This method represents a useful tool for user inspection of spectra derived from phosphopeptide isomers and significantly increases confidence when defining phosphorylation sites. In this way, we show that DivIVA is phosphorylated in vivo on five sites in the C-terminal part of the protein (T304, S309, S338, S344, and S355). The data have been deposited to the ProteomeXchange Consortium with identifier PXD00009S.
  •  
5.
  • Schlimpert, Susan, et al. (author)
  • Two dynamin-like proteins stabilize FtsZ rings during Streptomyces sporulation
  • 2017
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 114:30, s. 6176-6183
  • Journal article (peer-reviewed)abstract
    • During sporulation, the filamentous bacteria Streptomyces undergo a massive cell division event in which the synthesis of ladders of sporulation septa convert multigenomic hyphae into chains of unigenomic spores. This process requires cytokinetic Z-rings formed by the bacterial tubulin homolog FtsZ, and the stabilization of the newly formed Z-rings is crucial for completion of septum synthesis. Here we show that two dynamin-like proteins, DynA and DynB, play critical roles in this process. Dynamins are a family of large, multidomain GTPases involved in key cellular processes in eukaryotes, including vesicle trafficking and organelle division. Many bacterial genomes encode dynamin-like proteins, but the biological function of these proteins has remained largely enigmatic. Using a cell biological approach, we show that the two Streptomyces dynamins specifically localize to sporulation septa in an FtsZ-dependent manner. Moreover, dynamin mutants have a cell division defect due to the decreased stability of sporulation-specific Z-rings, as demonstrated by kymographs derived from time-lapse images of FtsZ ladder formation. This defect causes the premature disassembly of individual Z-rings, leading to the frequent abortion of septum synthesis, which in turn results in the production of long spore-like compartments with multiple chromosomes. Two-hybrid analysis revealed that the dynamins are part of the cell division machinery and that they mediate their effects on Z-ring stability during developmentally controlled cell division via a network of protein–protein interactions involving DynA, DynB, FtsZ, SepF, SepF2, and the FtsZ-positioning protein SsgB.
  •  
6.
  • Ausmees, Nora, et al. (author)
  • SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa
  • 2007
  • In: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 65:6, s. 1458-1473
  • Journal article (peer-reviewed)abstract
    • Sporulation in aerial hyphae of Streptomyces coelicolor involves profound changes in regulation of fundamental morphogenetic and cell cycle processes to convert the filamentous and multinucleoid cells to small unigenomic spores. Here, a novel sporulation locus consisting of smeA (encoding a small putative membrane protein) and sffA (encoding a SpoIIIE/FtsK-family protein) is characterized. Deletion of smeA-sffA gave rise to pleiotropic effects on spore maturation, and influenced the segregation of chromosomes and placement of septa during sporulation. Both smeA and sffA were expressed specifically in apical cells of sporogenic aerial hyphae simultaneously with or slightly after Z-ring assembly. The presence of smeA-like genes in streptomycete chromosomes, plasmids and transposons, often paired with a gene for a SpoIIIE/FtsK- or Tra-like protein, indicates that SmeA and SffA functions might be related to DNA transfer. During spore development SffA accumulated specifically at sporulation septa where it colocalized with FtsK. However, sffA did not show redundancy with ftsK, and SffA function appeared distinct from the DNA translocase activity displayed by FtsK during closure of sporulation septa. The septal localization of SffA was dependent on SmeA, suggesting that SmeA may act as an assembly factor for SffA and possibly other proteins required during spore maturation.
  •  
7.
  • Flärdh, Klas, et al. (author)
  • Regulation of apical growth and hyphal branching in Streptomyces
  • 2012
  • In: Current Opinion in Microbiology. - : Elsevier BV. - 1879-0364 .- 1369-5274. ; 15:6, s. 737-743
  • Journal article (peer-reviewed)abstract
    • The filamentous bacteria Streptomyces grow by tip extension and through the initiation of new branches, and this apical growth is directed by a polarisome-like complex involving the essential polarity protein DivIVA. New branch sites must be marked de novo and, until recently, there was no understanding of how these new sites are selected. Equally, hyphal branching patterns are affected by environmental conditions, but there was no insight into how polar growth and hyphal branching might be regulated in response to external or internal cues. This review focuses on recent discoveries that reveal the principal mechanism of branch site selection in Streptomyces, and the first mechanism to be identified that regulates polarisome behaviour to modulate polar growth and hyphal branching.
  •  
8.
  • Flärdh, Klas, et al. (author)
  • Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium.
  • 2009
  • In: Nature Reviews. Microbiology. - : Springer Science and Business Media LLC. - 1740-1534 .- 1740-1526. ; 7:1, s. 36-49
  • Research review (peer-reviewed)abstract
    • During the life cycle of the filamentous bacteria Streptomyces, morphological differentiation is closely integrated with fundamental growth and cell-cycle processes, as well as with truly complex multicellular behaviour that involves hormone-like extracellular signalling and coordination with an extraordinarily diverse secondary metabolism. Not only are the bacterial cytoskeleton and the machineries for cell-wall assembly, cell division and chromosome segregation reorganized during sporulation, but the developmental programme of these fascinating organisms also has many unusual elements, including the formation of a sporulating aerial mycelium and the production of a surfactant peptide and a hydrophobic sheath that allow cells to escape from the surface tension of the growth medium.
  •  
9.
  • Richards, David M., et al. (author)
  • Mechanistic Basis of Branch-Site Selection in Filamentous Bacteria
  • 2012
  • In: PLoS Computational Biology. - : Public Library of Science (PLoS). - 1553-7358. ; 8:3
  • Journal article (peer-reviewed)abstract
    • Many filamentous organisms, such as fungi, grow by tip-extension and by forming new branches behind the tips. A similar growth mode occurs in filamentous bacteria, including the genus Streptomyces, although here our mechanistic understanding has been very limited. The Streptomyces protein DivIVA is a critical determinant of hyphal growth and localizes in foci at hyphal tips and sites of future branch development. However, how such foci form was previously unknown. Here, we show experimentally that DivIVA focus-formation involves a novel mechanism in which new DivIVA foci break off from existing tip-foci, bypassing the need for initial nucleation or de novo branch-site selection. We develop a mathematical model for DivIVA-dependent growth and branching, involving DivIVA focus-formation by tip-focus splitting, focus growth, and the initiation of new branches at a critical focus size. We quantitatively fit our model to the experimentally-measured tip-to-branch and branch-to-branch length distributions. The model predicts a particular bimodal tip-to-branch distribution results from tip-focus splitting, a prediction we confirm experimentally. Our work provides mechanistic understanding of a novel mode of hyphal growth regulation that may be widely employed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view