SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cacho C.) "

Search: WFRF:(Cacho C.)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ade, P. A. R., et al. (author)
  • Planck intermediate results XXXIX. The Planck list of high-redshift source candidates
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Journal article (peer-reviewed)abstract
    • The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of T-xgal = 35K and a spectral index of beta(xgal) = 1.5. Exhibiting extremely high luminosities, larger than 10(14) L-circle dot, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z.
  •  
2.
  • Küspert, Julia, et al. (author)
  • Pseudogap suppression by competition with superconductivity in La-based cuprates
  • 2022
  • In: Physical Review Research. - 2643-1564. ; 4:4
  • Journal article (peer-reviewed)abstract
    • We carried out a comprehensive high-resolution angle-resolved photoemission spectroscopy (ARPES) study of the pseudogap interplay with superconductivity in La-based cuprates. The three systems La2-xSrxCuO4, La1.6-xNd0.4SrxCuO4, and La1.8-xEu0.2SrxCuO4 display slightly different pseudogap critical points in the temperature versus doping phase diagram. We studied the pseudogap evolution into the superconducting state for doping concentrations just below the critical point. In this setting, near optimal doping for superconductivity and in the presence of the weakest possible pseudogap, we uncover how the pseudogap is partially suppressed inside the superconducting state. This conclusion is based on the direct observation of a reduced pseudogap energy scale and re-emergence of spectral weight suppressed by the pseudogap. Altogether these observations suggest that the pseudogap phenomenon in La-based cuprates is in competition with superconductivity for antinodal spectral weight.
  •  
3.
  • Battiato, M., et al. (author)
  • Distinctive Picosecond Spin Polarization Dynamics in Bulk Half Metals
  • 2018
  • In: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 121:7
  • Journal article (peer-reviewed)abstract
    • Femtosecond laser excitations in half-metal (HM) compounds are theoretically predicted to induce an exotic picosecond spin dynamics. In particular, conversely to what is observed in conventional metals and semiconductors, the thermalization process in HMs leads to a long living partially thermalized configuration characterized by three Fermi-Dirac distributions for the minority, majority conduction, and majority valence electrons, respectively. Remarkably, these distributions have the same temperature but different chemical potentials. This unusual thermodynamic state is causing a persistent nonequilibrium spin polarization only well above the Fermi energy. Femtosecond spin dynamics experiments performed on Fe3O4 by time- and spin-resolved photoelectron spectroscopy support our model. Furthermore, the spin polarization response proves to be very robust and it can be adopted to selectively test the bulk HM character in a wide range of compounds.
  •  
4.
  •  
5.
  • Horio, M., et al. (author)
  • Electronic reconstruction forming a C-2-symmetric Dirac semimetal in Ca3Ru2O7
  • 2021
  • In: npj Quantum Materials. - : Springer Science and Business Media LLC. - 2397-4648. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Electronic band structures in solids stem from a periodic potential reflecting the structure of either the crystal lattice or electronic order. In the stoichiometric ruthenate Ca3Ru2O7, numerous Fermi surface-sensitive probes indicate a low-temperature electronic reconstruction. Yet, the causality and the reconstructed band structure remain unsolved. Here, we show by angle-resolved photoemission spectroscopy, how in Ca3Ru2O7 a C-2-symmetric massive Dirac semimetal is realized through a Brillouin-zone preserving electronic reconstruction. This Dirac semimetal emerges in a two-stage transition upon cooling. The Dirac point and band velocities are consistent with constraints set by quantum oscillation, thermodynamic, and transport experiments, suggesting that the complete Fermi surface is resolved. The reconstructed structure-incompatible with translational-symmetry-breaking density waves-serves as an important test for band structure calculations of correlated electron systems.
  •  
6.
  • Majchrzak, Paulina, et al. (author)
  • Spectroscopic view of ultrafast charge carrier dynamics in single- and bilayer transition metal dichalcogenide semiconductors
  • 2021
  • In: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 250
  • Journal article (peer-reviewed)abstract
    • The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative time- and angle-resolved photoemission spectroscopy (TR-ARPES) study of the transient electronic structure and ultrafast carrier dynamics in the single- and bilayer TMDCs MoS2 and WS2 on three different substrates: Au(111), Ag(111) and graphene/SiC. The photoexcited quasiparticle bandgaps are observed to vary over the range of 1.9-2.5 eV between our systems. The transient conduction band signals decay on a sub-50 fs timescale on the metals, signifying an efficient removal of photoinduced carriers into the bulk metallic states. On graphene, we instead observe a fast timescale on the order of 170 fs, followed by a slow dynamics for the conduction band decay in MoS2. These timescales are explained by Auger recombination involving MoS2 and in-gap defect states. In bilayer TMDCs on metals we observe a complex redistribution of excited holes along the valence band that is substantially affected by interactions with the continuum of bulk metallic states.
  •  
7.
  • Ndiaye, W., et al. (author)
  • Bulk electronic structure of Mn5Ge3/Ge(111) films by angle-resolved photoemission spectroscopy
  • 2013
  • In: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 87:16
  • Journal article (peer-reviewed)abstract
    • Mn5Ge3(001) thin films grown on Ge(111)-c(2 x 8) reconstructed surfaces were studied by angle-resolved photoemission using synchrotron radiation in the 14-94 eV photon energy range. The results obtained in the Gamma ALM plane and in the Gamma AHK plane are in agreement with simulations starting with band structure calculations based on the density functional theory. This provides a unique validation of band structure calculations for a proper description of the electronic properties of Mn5Ge3. Only the spectral feature very close to the Fermi level cannot be well explained by the simulation. This departure is discussed in terms of the three-dimensional nature of the sample and of correlation effects.
  •  
8.
  • Ndiaye, W., et al. (author)
  • k dependence of the spin polarization in Mn5Ge3/Ge(111) thin films
  • 2015
  • In: Physical Review B (Condensed Matter and Materials Physics). - 1098-0121. ; 91:12
  • Journal article (peer-reviewed)abstract
    • Mn5Ge3(001) thin films grown on Ge(111) were studied by angle-and spin-resolved photoemission using synchrotron radiation in the 17-40 eV photon energy range. The photoelectron spectra were simulated starting from a first-principles band-structure calculation for the ground state, using the free-electron approximation for the final states, taking into account photohole lifetime effects and k(perpendicular to) broadening plus correlation effects, but ignoring transition matrix elements. The measured spin polarizations for the various k points investigated in the Gamma MLA plane of the Brillouin zone are found to be in fair enough agreement with the simulated ones, providing a strong support to the ground-state band-structure calculations. Possible origins for the departures between either simulations and experiments or previous and present experiments are discussed.
  •  
9.
  • Smit, S., et al. (author)
  • Momentum-dependent scaling exponents of nodal self-energies measured in strange metal cuprates and modelled using semi-holography
  • 2024
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The anomalous strange metal phase found in high-Tc cuprates does not follow the conventional condensed-matter principles enshrined in the Fermi liquid and presents a great challenge for theory. Highly precise experimental determination of the electronic self-energy can provide a test bed for theoretical models of strange metals, and angle-resolved photoemission can provide this as a function of frequency, momentum, temperature and doping. Here we show that constant energy cuts through the nodal spectral function in (Pb,Bi)2Sr2−xLaxCuO6+δ have a non-Lorentzian lineshape, consistent with a self-energy that is k dependent. This provides a new test for aspiring theories. Here we show that the experimental data are captured remarkably well by a power law with a k-dependent scaling exponent smoothly evolving with doping, a description that emerges naturally from anti-de Sitter/conformal-field-theory based semi-holography. This puts a spotlight on holographic methods for the quantitative modelling of strongly interacting quantum materials like the cuprate strange metals.
  •  
10.
  • Kramer, K. P., et al. (author)
  • Revealing the Orbital Composition of Heavy Fermion Quasiparticles in CeRu 2 Si 2
  • 2023
  • In: Journal of the Physical Society of Japan. - 1347-4073 .- 0031-9015. ; 92:10
  • Journal article (peer-reviewed)abstract
    • We present a resonant angle-resolved photoemission spectroscopy (ARPES) study of the electronic band structure and heavy fermion quasiparticles in CeRu2Si2. Using light polarization analysis, considerations of the crystal field environment and hybridization between conduction and f electronic states, we identify the d-electronic orbital character of conduction bands crossing the Fermi level. Resonant ARPES spectra suggest that the localized Ce f states hybridize with eg and t2g states around the zone center. In this fashion, we reveal the orbital structure of the heavy fermion quasiparticles in CeRu2Si2 and discuss its implications for metamagnetism and superconductivity in the related compound CeCu2Si2
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view