SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Campero Melina) "

Search: WFRF:(Campero Melina)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fernández, Carla Eloisa, et al. (author)
  • Disentangling population strategies of two cladocerans adapted to different ultraviolet regimes
  • 2018
  • In: Ecology and Evolution. - : Wiley. - 2045-7758. ; 8:4, s. 1995-2005
  • Journal article (peer-reviewed)abstract
    • Zooplankton have evolved several mechanisms to deal with environmental threats, such as ultraviolet radiation (UVR), and in order to identify strategies inherent to organisms exposed to different UVR environments, we here examine life-history traits of two lineages of Daphnia pulex. The lineages differed in the UVR dose they had received at their place of origin from extremely high UVR stress at high-altitude Bolivian lakes to low UVR stress near the sea level in temperate Sweden. Nine life-history variables of each lineage were analyzed in laboratory experiments in the presence and the absence of sub-lethal doses of UVR (UV-A band), and we identified trade-offs among variables through structural equation modeling (SEM). The UVR treatment was detrimental to almost all life-history variables of both lineages; however, the Daphnia historically exposed to higher doses of UVR (HighUV) showed a higher overall fecundity than those historically exposed to lower doses of UVR (LowUV). The total offspring and ephippia production, as well as the number of clutches and number of offspring atfirst reproduction, was directly affected by UVR in both lineages. Main differences between lineages involved indirect effects that affected offspring production as the age at first reproduction. We here show that organisms within the same species have developed different strategies as responses to UVR, although no increased physiological tolerance or plasticity was shown by the HighUV lineage. In addition to known tolerance strategies to UVR, including avoidance, prevention, or repairing of damages, we here propose a population strategy that includes early reproduction and high fertility, which we show compensated for the fitness loss imposed by UVR stress.
  •  
2.
  • Fernández, Carla E., et al. (author)
  • Local adaptation to UV radiation in zooplankton : a behavioral and physiological approach
  • 2020
  • In: Ecosphere. - : Wiley. - 2150-8925. ; 11:4
  • Journal article (peer-reviewed)abstract
    • Ultraviolet radiation (UVR) is recognized as a driving force for phenotypic divergence. Here, we aim at assessing the ability of zooplankton to induce UVR tolerance and disentangle the relative importance of local adaptations behind the expression of such tolerance. Two populations of Daphnia pulex, derived from environments strongly differing in UVR conditions, were exposed to UVR for 70 d to induce production of photo-protective compounds and changes in behavioral responses. We expected greater tolerance to UVR in individuals from the high-UVR (H-U) environment as well as a refuge demand inversely related to the level of pigmentation. However, the complementarity between physiological and behavioral strategies was only observed on animals from the Low-UVR environment (L-U). L-U animals developed photo-protective compounds and decreased their refuge demand when re-exposed to UVR, that is, tolerated more UVR, compared to their control siblings. Conversely, UVR-exposed individuals from the H-U environment even having developed higher levels of photo-protective compounds increased their refuge demand staying deeper in the water column compared to the control animals, likely expressing an evolutionary memory to seek refuge in deeper waters irrespective of the UVR level. Stronger changes were observed in the H-U population compared to the L-U population; thus, our results suggest that although changes in tolerance after UVR exposure were evident for both populations, the strength of the inductions was more related to local adaptation independently of the rearing environment, showing that UVR tolerance is dependent on the evolutionary history of each population.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view