SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Carn S.) "

Search: WFRF:(Carn S.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Galle, Bo, 1952, et al. (author)
  • NOVAC – Network for Observation of Volcanic and Atmospheric Change, recent developments and present status
  • 2011
  • In: 11th IAVCEI-CCVG Gas Workshop, September 1 - 10, 2011, Kamchatka, Russia.
  • Conference paper (peer-reviewed)abstract
    • The NOVAC project, funded by European Union, was started in October 2005 with the aim to establish a global network of stations for the quantitative measurement of volcanic gas emissions. The network is based on a novel type of instrument, the Scanning Dual-beam mini-DOAS. Primarily theinstruments will be used to provide new parameters in the toolbox of observatories for gas emission estimates, geophysical research and hazard assessment. In addition, data are exploited for other scientific purposes, e.g. global estimates of volcanic gas emissions, regional to global statistical analysis, and studies of atmospheric chemistry. In particular large scale validation of satellite measurements of volcanic gas emissions will be possible, bringing space-borne observation of volcanoes a significant step forward.The Scanning Dual-beam Mini-DOAS instrument is capable of real-time automatic, unattended measurement of the total emission fluxes of SO2 and BrO from a volcano with better then 5 minutes time resolution during daylight. The high time-resolution of the data enables correlations with othergeophysical data, e.g. seismicity, thus significantly extending the information available for real-time hazard assessment and research. By comparing high time resolution gas emission data with emissions from neighboring volcanoes on different geographical scales, or with other geophysical events (earthquakes, tidal waves) mechanisms of volcanic forcing may be revealed.The network today encompasses 58 instruments installed on 24 volcanoes, including some of the most active and strongest degassing volcanoes in the world.In addition a mobile version of the instrument has been developed intended for rapid deployment at a volcano in relation to a volcanic crisis.The project and its present status will be presented.
  •  
3.
  •  
4.
  •  
5.
  • Liu, E. J., et al. (author)
  • Aerial strategies advance volcanic gas measurements at inaccessible, strongly degassing volcanoes
  • 2020
  • In: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:44
  • Journal article (peer-reviewed)abstract
    • Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day-1 CO2 and 5150 ± [730, 340] tons day-1 SO2-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near-real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.
  •  
6.
  • Martinsson, Bengt, et al. (author)
  • Influence of the 2008 Kasatochi volcanic eruption on sulfurous and carbonaceous aerosol constituents in the lower stratosphere
  • 2009
  • In: Geophysical Research Letters. - 1944-8007. ; 36
  • Journal article (peer-reviewed)abstract
    • Influences on stratospheric aerosol during the first four months following the eruption of Kasatochi volcano (Alaska) were studied using observations at 10700 +/- 600 m altitude from the CARIBIC platform. Collected aerosol samples were analyzed for elemental constituents. Particle number concentrations were recorded in three size intervals together with ozone mixing ratios and slant column densities of SO2. The eruption increased particulate sulfur concentrations by a factor of up to 10 compared to periods before the eruption (1999-2002 and 2005-August 2008). Three to four months later, the concentration was still elevated by a factor of 3 in the lowermost stratosphere at northern midlatitudes. Besides sulfur, the Kasatochi aerosol contained a significant carbonaceous component and ash that declined in time after the eruption. The carbon-to-sulfur mass concentration ratio of the volcanic aerosol was 2.6 seven days after the eruption and reached 1.2 after 3 - 4 months. Citation: Martinsson, B. G., C. A. M. Brenninkmeijer, S. A. Carn, M. Hermann, K.-P. Heue, P. F. J. van Velthoven, and A. Zahn (2009), Influence of the 2008 Kasatochi volcanic eruption on sulfurous and carbonaceous aerosol constituents in the lower stratosphere, Geophys. Res. Lett., 36, L12813, doi: 10.1029/2009GL038735.
  •  
7.
  • Nicolas-Boluda, A., et al. (author)
  • Intracellular Fate of Hydrophobic Nanocrystal Self-Assemblies in Tumor Cells
  • 2020
  • In: Advanced Functional Materials. - : Wiley-VCH Verlag. - 1616-301X .- 1616-3028. ; 30:40
  • Journal article (peer-reviewed)abstract
    • Control of interactions between nanomaterials and cells remains a biomedical challenge. A strategy is proposed to modulate the intralysosomal distribution of nanoparticles through the design of 3D suprastructures built by hydrophilic nanocrystals (NCs) coated with alkyl chains. The intracellular fate of two water-dispersible architectures of self-assembled hydrophobic magnetic NCs: hollow deformable shells (colloidosomes) or solid fcc particles (supraballs) is compared. These two self-assemblies display increased cellular uptake by tumor cells compared to dispersions of the water-soluble NC building blocks. Moreover, the self-assembly structures increase the NCs density in lysosomes and close to the lysosome membrane. Importantly, the structural organization of NCs in colloidosomes and supraballs are maintained in lysosomes up to 8 days after internalization, whereas initially dispersed hydrophilic NCs are randomly aggregated. Supraballs and colloidosomes are differently sensed by cells due to their different architectures and mechanical properties. Flexible and soft colloidosomes deform and spread along the biological membranes. In contrast, the more rigid supraballs remain spherical. By subjecting the internalized suprastructures to a magnetic field, they both align and form long chains. Overall, it is highlighted that the mechanical and topological properties of the self-assemblies direct their intracellular fate allowing the control intralysosomal density, ordering, and localization of NCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view