SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Case Laura K.) "

Search: WFRF:(Case Laura K.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Case, Laura K., et al. (author)
  • Encoding of Touch Intensity But Not Pleasantness in Human Primary Somatosensory Cortex
  • 2016
  • In: Journal of Neuroscience. - : SOC NEUROSCIENCE. - 0270-6474 .- 1529-2401. ; 36:21, s. 5850-5860
  • Journal article (peer-reviewed)abstract
    • Growing interest in affective touch has delineated a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, have cast doubt on the segregation of touch discrimination and affect, suggesting that S1 also encodes affective qualities. We used functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic stimulation (rTMS) to examine the role of S1 in processing touch intensity and pleasantness. Twenty-six healthy human adults rated brushing on the hand during fMRI. Intensity ratings significantly predicted activation in S1, whereas pleasantness ratings predicted activation only in the anterior cingulate cortex. Nineteen subjects also received inhibitory rTMS over right hemisphere S1 and the vertex (control). After S1 rTMS, but not after vertex rTMS, sensory discrimination was reduced and subjects with reduced sensory discrimination rated touch as more intense. In contrast, rTMS did not alter ratings of touch pleasantness. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1.
  •  
2.
  • Case, Laura K., et al. (author)
  • Inhibitory rTMS of secondary somatosensory cortex reduces intensity but not pleasantness of gentle touch
  • 2017
  • In: Neuroscience Letters. - : ELSEVIER IRELAND LTD. - 0304-3940 .- 1872-7972. ; 653, s. 84-91
  • Journal article (peer-reviewed)abstract
    • Research suggests that the discriminative and affective aspects of touch are processed differently in the brain. Primary somatosensory cortex is strongly implicated in touch discrimination, whereas insular and prefronal regions have been associated with pleasantness aspects of touch. However, the role of secondary somatosensory cortex (S2) is less clear. In the current study we used inhibitory repetitive transcranial magnetic stimulation (rTMS) to temporarily deactivate S2 and probe its role in touch perception. Nineteen healthy adults received two sessions of 1-Hz rTMS on separate days, one targeting right S2 and the other targeting the vertex (control). Before and after rTMS, subjects rated the intensity and pleasantness of slow and fast gentle brushing of the hand and performed a 2-point tactile discrimination task, followed by fMRI during additional brushing. rTMS to S2 (but not vertex) decreased intensity ratings of fast brushing, without altering touch pleasantness or spatial discrimination. MRI showed a reduced response to brushing in S2 (but not in S1 or insula) after S2 rTMS. Together, our results show that reducing touch evoked activity in S2 decreases perceived touch intensity, suggesting a causal role of S2 in touch intensity perception. Published by Elsevier Ireland Ltd.
  •  
3.
  • Case, Laura K., et al. (author)
  • Innocuous pressure sensation requires A-type afferents but not functional Rho Iota Epsilon Zeta Omicron 2 channels in humans
  • 2021
  • In: Nature Communications. - : Nature Research. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • The sensation of pressure allows us to feel sustained compression and body strain. While our understanding of cutaneous touch has grown significantly in recent years, how deep tissue sensations are detected remains less clear. Here, we use quantitative sensory evaluations of patients with rare sensory disorders, as well as nerve blocks in typical individuals, to probe the neural and genetic mechanisms for detecting non-painful pressure. We show that the ability to perceive innocuous pressures is lost when myelinated fiber function is experimentally blocked in healthy volunteers and that two patients lacking A beta fibers are strikingly unable to feel innocuous pressures at all. We find that seven individuals with inherited mutations in the mechanoreceptor PIEZO2 gene, who have major deficits in touch and proprioception, are nearly as good at sensing pressure as healthy control subjects. Together, these data support a role for A beta afferents in pressure sensation and suggest the existence of an unknown molecular pathway for its detection. The mechanisms underlying deep pressure sensing are not fully understood. Here the authors demonstrate that while two individuals lacking A beta fibers demonstrate impaired deep pressure sensing, seven individuals with PIEZO2 loss of function mutations display normal deep pressure responses.
  •  
4.
  • Case, Laura K., et al. (author)
  • Pleasant Deep Pressure : Expanding the Social Touch Hypothesis
  • 2021
  • In: Neuroscience. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0306-4522 .- 1873-7544. ; 464
  • Journal article (peer-reviewed)abstract
    • Neuroscientific research on pleasant touch has focused on the C-tactile pathway for gentle stroking and has successfully explained how these sensory fibers transmit information about affective social touch to the brain and induce sensations of pleasantness. The C-tactile social/affective touch hypothesis even proposes that C-tactile fibers form a privileged pathway underlying social touch. However, deep pressure is a type of touch commonly considered pleasant and calming, occurring in hugs, cuddling, and massage. In this paper we introduce a paradigm for studying pleasant deep pressure and propose that it constitutes another important form of social touch. We describe development of the oscillating compression sleeve (OCS) as one approach to administering deep pressure and demonstrate that this touch is perceived as pleasant and calming. Further, we show that deep pressure can be imaged with functional magnetic resonance imaging (MRI) using the air-pressure driven OCS and that deep pressure activates brain regions highly similar to those that respond to C-tactile stroking, as well as regions not activated by stroking. We propose that deep pressure constitutes another social touch pathway of evolutionary importance signaling the close proximity of conspecifics. This article is part of a Special Issue entitled: The Neurobiology of Social and Affective Touch. (c) 2020 The Authors. Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/). research on pleasant touch has focused on the C-tactile pathway for gentle stroking and has successfully explained how these sensory fibers transmit information about affective social touch to the brain and induce sensations of pleasantness. The C-tactile social/affective touch hypothesis even proposes that C-tactile fibers form a privileged pathway underlying social touch. However, deep pressure is a type of touch commonly considered pleasant and calming, occurring in hugs, cuddling, and massage. In this paper we introduce a paradigm for studying pleasant deep pressure and propose that it constitutes another important form of social touch. We describe development of the oscillating compression sleeve (OCS) as one approach to administering deep pressure and demonstrate that this touch is perceived as pleasant and calming. Further, we show that deep pressure can be imaged with functional magnetic resonance imaging (MRI) using the air-pressuredriven OCS and that deep pressure activates brain regions highly similar to those that respond to C-tactile stroking, as well as regions not activated by stroking. We propose that deep pressure constitutes another social touch pathway of evolutionary importance signaling the close proximity of conspecifics. This article is part of a Special Issue entitled: The Neurobiology of Social and Affective Touch. (c) 2020 The Authors. Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
  •  
5.
  • Case, Laura K, et al. (author)
  • Touch Perception Altered by Chronic Pain and by Opioid Blockade.
  • 2016
  • In: eNeuro. - 2373-2822. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Touch plays a significant role in human social behavior and social communication, and its rewarding nature has been suggested to involve opioids. Opioid blockade in monkeys leads to increased solicitation and receipt of grooming, suggesting heightened enjoyment of touch. We sought to study the role of endogenous opioids in perception of affective touch in healthy adults and in patients with fibromyalgia, a chronic pain condition shown to involve reduced opioid receptor availability. The pleasantness of touch has been linked to the activation of C-tactile fibers, which respond maximally to slow gentle touch and correlate with ratings of pleasantness. We administered naloxone to patients and healthy controls to directly observe the consequences of µ-opioid blockade on the perceived pleasantness and intensity of touch. We found that at baseline chronic pain patients showed a blunted distinction between slow and fast brushing for both intensity and pleasantness, suggesting reduced C-tactile touch processing. In addition, we found a differential effect of opioid blockade on touch perception in healthy subjects and pain patients. In healthy individuals, opioid blockade showed a trend toward increased ratings of touch pleasantness, while in chronic pain patients it significantly decreased ratings of touch intensity. Further, in healthy individuals, naloxone-induced increase in touch pleasantness was associated with naloxone-induced decreased preference for slow touch, suggesting a possible effect of opioid levels on processing of C-tactile fiber input. These findings suggest a role for endogenous opioids in touch processing, and provide further evidence for altered opioid functioning in chronic pain patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view