SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Castelain Mickaël) "

Search: WFRF:(Castelain Mickaël)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Axner, Ove, 1957-, et al. (author)
  • Assessing bacterial adhesion on an individual adhesin and single pili level using optical tweezers
  • 2011
  • In: Bacterial adhesion. - Berlin : Springer Berlin/Heidelberg. ; , s. 301-313
  • Book chapter (peer-reviewed)abstract
    • Optical tweezers (OT) are a technique that, by focused laser light, can both manipulate micrometer sized objects and measure minute forces (in the pN range) in biological systems. The technique is therefore suitable for assessment of bacterial adhesion on an individual adhesin-receptor and single attachment organelle (pili) level. This chapter summarizes the use of OT for assessment of adhesion mechanisms of both non-piliated and piliated bacteria. The latter include the important helix-like pili expressed by uropathogenic Escherichia coli (UPEC), which have shown to have unique and intricate biomechanical properties. It is conjectured that the large flexibility of this type of pili allows for a redistribution of an external shear force among several pili, thereby extending the adhesion lifetime of bacteria. Systems with helix-like adhesion organelles may therefore act as dynamic biomechanical machineries, enhancing the ability of bacteria to withstand high shear forces originating from rinsing flows such as in the urinary tract. This implies that pili constitute an important virulence factor and a possible target for future anti-microbial drugs.
  •  
2.
  • Axner, Ove, et al. (author)
  • Unraveling the secrets of bacterial adhesion organelles using single-molecule force spectroscopy
  • 2010
  • In: Single molecule spectroscopy in chemistry, physics and biology. - Berlin, Heidelberg : Springer. - 9783642025969 ; , s. 337-362
  • Conference paper (peer-reviewed)abstract
    • Many types of bacterium express micrometer-long attachment organelles (so-called pili) whose role is to mediate adhesion to host tissue. Until recently, little was known about their function in the adhesion process. Force-measuring optical tweezers (FMOT) have since then been used to unravel the biomechanical properties of various types of pili, primarily those from uropathogenic E. coli, in particular their force-vs.-elongation response, but lately also some properties of the adhesin situated at the distal end of the pilus. This knowledge provides an understanding of how piliated bacteria can sustain external shear forces caused by rinsing processes, e.g., urine flow. It has been found that many types of pilus exhibit unique and complex force-vs.-elongation responses. It has been conjectured that their dissimilar properties impose significant differences in their ability to sustain external forces and that different types of pilus therefore have dissimilar predisposition to withstand different types of rinsing conditions. An understanding of these properties is of high importance since it can serve as a basis for finding new means to combat bacterial adhesion, including that caused by antibiotic-resistance bacteria. This work presents a review of the current status of the assessment of biophysical properties of individual pili on single bacteria exposed to strain/stress, primarily by the FMOT technique. It also addresses, for the first time, how the elongation and retraction properties of the rod couple to the adhesive properties of the tip adhesin.
  •  
3.
  • Axner, Ove, et al. (author)
  • Unraveling the secrets of bacterial adhesion organelles using single molecule force spectroscopy
  • 2010. - 96
  • In: Springer series in chemical physics. - : Springer Verlag. - 9783642025969 ; , s. 337-362
  • Book chapter (other academic/artistic)abstract
    • Many types of bacterium express micrometer-long attachment organelles (so called pili) whose role is to mediate adhesion to host tissue. Until recently, little was known about their function in the adhesion process. Forcemeasuring  ptical tweezers (FMOT) have since then been used to unravel the  iomechanical properties of various types of pili, primarily those from uropathogenic E. coli, in particular their force-vs.-elongation response, but lately also some properties of the adhesin situated and the distal end of the pilus. This knowledge provides an understanding of how piliated bacteria can sustain external shear forces caused by rinsing processes, e.g. urine flow. It has been found that anytypes of pilus exhibit unique and complex force-vs.-elongation responses. It has been conjectured that their dissimilar properties impose significant differences in their ability to sustain external forces and that different types of pilus therefore have dissimilar predisposition to withstand different types of rinsing conditions. An understanding of these properties is of high importance since it can serve as a basis for finding new means to combat bacterial adhesion, including that caused by antibiotic-resistance bacteria. This work presents a review of the current status of the assessment of biophysical properties of individual pili on single bacteria exposed to strain/stress, primarily by the FMOT technique. It also addresses, for the first time, how the elongation and retraction properties of the rod couple to the adhesive properties of the tip adhesin.
  •  
4.
  • Castelain, Mickaël, et al. (author)
  • Characterization of the Biomechanical Properties of T4 Pili Expressed by Streptococcus pneumoniae – A Comparison between Helix-like and Open Coil-like Pili
  • 2009
  • In: ChemPhysChem. - : Wiley. - 1439-4235 .- 1439-7641. ; 10:9-10, s. 1533-1540
  • Journal article (peer-reviewed)abstract
    • Bacterial adhesion organelles, known as fimbria or pili, are expressed by Gram–positive as well as Gram–negative bacteria families. These appendages play a key role in the first steps of the invasion and infection processes, and they therefore provide bacteria with pathogenic abilities. To improve the knowledge of pili-mediated bacterial adhesion to host cells and how these pili behave under the presence of an external force, we first characterize, using force measuring optical tweezers, open coil-like T4 pili expressed by Gram–positive Streptococcus pneumoniae with respect to their biomechanicalproperties. It is shown that their elongation behavior can be well described by the worm-like chain model and that they possess a large degree of flexibility. Their properties are then compared with those of helix-like pili expressed by Gram–negative uropathogenic Escherichia coli (UPEC), which have different pili architecture. The differences suggest that these two types of pili have distinctly dissimilar mechanisms to adhere and sustain external forces. Helix-like pili expressed by UPEC bacteria adhere to host cells by single adhesins located at the distal end of the pili while their helix-like structures act as shock absorbers to dampen the irregularly shear forces induced by urine flow and to increase the cooperativity of the pili ensemble. Open coil-like pili expressed by S. pneumoniae adhere to cells by a multitude of adhesins distributed along the pili. It is hypothesized that these two types of pili represent different strategies of adhering to host cells in the presence of external forces. When exposed to significant forces, bacteria expressing helix-like pili remain attached bydistributing the external force among a multitude of pili, whereas bacteria expressing open coil-like pili sustain large forces primarily by their multitude of binding adhesins.
  •  
5.
  • Castelain, Mickaël, et al. (author)
  • Fast uncoiling kinetics of F1C pili expressed by uropathogenic Escherichia coli are revealed on a single pilus level using force-measuring optical tweezers
  • 2011
  • In: European Biophysics Journal. - : Springer Science and Business Media LLC. - 0175-7571 .- 1432-1017. ; 40:3, s. 305-316
  • Journal article (peer-reviewed)abstract
    • Uropathogenic Escherichia coli (UPEC) expressvarious kinds of organelles, so-called pili or fimbriae, thatmediate adhesion to host tissue in the urinary tract throughspecific receptor-adhesin interactions. The biomechanicalproperties of these pili have been considered important forthe ability of bacteria to withstand shear forces from rinsingurine flows. Force-measuring optical tweezers have beenused to characterize individual organelles of F1C typeexpressed by UPEC bacteria with respect to such properties.Qualitatively, the force-versus-elongation response wasfound to be similar to that of other types of helix-like piliexpressed by UPEC, i.e., type 1, P, and S, with force-inducedelongation in three regions, one of which represents theimportant uncoiling mechanism of the helix-like quaternarystructure. Quantitatively, the steady-state uncoiling forcewas assessed as 26.4 ±1.4 pN, which is similar to those ofother pili (which range from 21 pN for SI to 30 pN for type 1).The corner velocity for dynamic response (1,400 nm/s) wasfound to be larger than those of the other pili (400–700 nm/sfor S and P pili, and 6 nm/s for type 1). The kinetics werefound to be faster, with a thermal opening rate of 17 Hz, afew times higher than S and P pili, and three orders ofmagnitude higher than type 1. These data suggest that F1Cpili are, like P and S pili, evolutionarily selected to primarilywithstand the conditions expressed in the upper urinary tract.
  •  
6.
  •  
7.
  • Castelain, Mickael, et al. (author)
  • Single-cell adhesion probed in-situ using optical tweezers : A case study with Saccharomyces cerevisiae
  • 2012
  • In: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 111:11, s. 114701-
  • Journal article (peer-reviewed)abstract
    • A facile method of using optical trapping to measure cell adhesion forces is presented and applied to the adhesion of Saccharomyces cerevisiae on glass, in contact with solutions of different compositions. Trapping yeast cells with optical tweezers (OT) is not perturbed by cell wall deformation or cell deviation from a spherical shape. The trapping force calibration requires correction not only for the hydrodynamic effect of the neighboring wall but also for spherical aberrations affecting the focal volume and the trap stiffness. Yeast cells trapped for up to 5 h were still able to undergo budding but showed an increase of doubling time. The proportion of adhering cells showed the expected variation according to the solution composition. The detachment force varied in the same way. This observation and the fact that the detachment stress was exerted parallel to the substrate surface point to the role of interactions involving solvated macromolecules. Both the proportion of adhering cells and the removal force showed a distribution which, in our experimental conditions, must be attributed to a heterogeneity of surface properties at the cell level or at the subcellular scale. As compared with magnetic tweezers, atomic force microscopy, and more conventional ways of studying cell adhesion (shear-flow cells), OT present several advantages that are emphasized in this paper. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723566]
  •  
8.
  • Castelain, Mickaël, 1980-, et al. (author)
  • The initial single yeast cell adhesion on glass via optical trapping and Derjaguin-Landau-Verwey-Overbeek predictions.
  • 2008
  • In: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 128:13, s. 135101-
  • Journal article (peer-reviewed)abstract
    • We used an optical tweezer to investigate the adhesion of yeast Saccharomyces cerevisiae onto a glass substrate at the initial contact. Micromanipulation of free-living objects with single-beam gradient optical trap enabled to highlight mechanisms involved in this initial contact. As a function of the ionic strength and with a displacement parallel to the glass surface, the yeast adheres following different successive ways: (i) Slipping and rolling at 1.5 mM NaCl, (ii) slipping, rolling, and sticking at 15 mM NaCl, and (iii) only sticking at 150 mM. These observations were numerous and reproducible. A kinetic evolution of these adhesion phenomena during yeast movement was clearly established. The nature, range, and relative intensity of forces involved in these different adhesion mechanisms have been worked out as a quantitative analysis from Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO theories. Calculations show that the adhesion mechanisms observed and their affinity with ionic strength were mainly governed by the Lifshitz-van der Waals interaction forces and the electrical double-layer repulsion to which are added specific contact forces linked to "sticky" glycoprotein secretion, considered to be the main forces capable of overcoming the short-range Lewis acid-base repulsions.
  •  
9.
  • Castelain, Mickaël, et al. (author)
  • Unfolding and refolding properties of S pili on extraintestinal pathogenic Escherichia coli
  • 2010
  • In: European Biophysics Journal. - : Springer Science and Business Media LLC. - 0175-7571 .- 1432-1017. ; 39:8, s. 1105-1115
  • Journal article (peer-reviewed)abstract
    • S pili are members of the chaperone-usher-pathway-assembled pili family that are predominantly associated with neonatal meningitis (S(II)) and believed to play a role in ascending urinary tract infections (S(I)). We used force-measuring optical tweezers to characterize the intrinsic biomechanical properties and kinetics of S(II) and S(I) pili. Under steady-state conditions, a sequential unfolding of the layers in the helix-like rod occurred at somewhat different forces, 26 pN for S(II) pili and 21 pN for S(I) pili, and there was an apparent difference in the kinetics, 1.3 and 8.8 Hz. Tests with bacteria defective in a newly recognized sfa gene (sfaX (II)) indicated that absence of the sfaX (II) gene weakens the interactions of the fimbrium slightly and decreases the kinetics. Data of S(I) are compared with those of previously assessed pili primary associated with urinary tract infections, the P and type 1 pili. S pili have weaker layer-to-layer bonds than both P and type 1 pili, 21, 28 and 30 pN, respectively. In addition, the S pili kinetics are ~10 times faster than the kinetics of P pili and ~550 times faster than the kinetics of type 1 pili. Our results also show that the biomechanical properties of pili expressed ectopically from a plasmid in a laboratory strain (HB101) and pili expressed from the chromosome of a clinical isolate (IHE3034) are identical. Moreover, we demonstrate that it is possible to distinguish, by analyzing force-extension data, the different types of pili expressed by an individual cell of a clinical bacterial isolate.
  •  
10.
  • Klinth, Jeanna E., et al. (author)
  • The Influence of pH on the Specific Adhesion of P Piliated Escherichia coli
  • 2012
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:6, s. e38548-
  • Journal article (peer-reviewed)abstract
    • Adhesion to host tissues is an initiating step in a majority of bacterial infections. In the case of Gram-negative bacteria this adhesion is often mediated by a specific interaction between an adhesin, positioned at the distal end of bacterial pili, and its receptor on the surface of the host tissue. Furthermore, the rod of the pilus, and particularly its biomechanical properties, is believed to be crucial for the ability of bacteria to withstand external forces caused by, for example, (in the case of urinary tract infections) urinary rinsing flows by redistributing the force to several pili. In this work, the adhesion properties of P-piliated E. coli and their dependence of pH have been investigated in a broad pH range by both the surface plasmon resonance technique and force measuring optical tweezers. We demonstrate that P piliated bacteria have an adhesion ability throughout the entire physiologically relevant pH range (pH 4.5 - 8). We also show that pH has a higher impact on the binding rate than on the binding stability or the biomechanical properties of pili; the binding rate was found to have a maximum around pH 5 while the binding stability was found to have a broader distribution over pH and be significant over the entire physiologically relevant pH range. Force measurements on a single organelle level show that the biomechanical properties of P pili are not significantly affected by pH.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view