SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Castellani Rudy J.) "

Search: WFRF:(Castellani Rudy J.)

  • Result 1-10 of 28
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Castellani, Rudy J., et al. (author)
  • CD3 in Lewy pathology : does the abnormal recall of neurodevelopmental processes underlie Parkinson's disease
  • 2011
  • In: Journal of neural transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 118:1, s. 23-26
  • Journal article (peer-reviewed)abstract
    • CD3ζ is a subunit of the CD3 molecule that, until recently, appeared restricted to T cells and natural killer cells. However, experimental studies have demonstrated a role of CD3ζ in dendritic outgrowth in the visual system as well as in synaptic plasticity. Given the increasing evidence for uncharacteristic recapitulation of neurodevelopmental processes in neurodegenerative diseases, in this study, we evaluated brains from subjects with Parkinson's disease and Lewy body dementia for evidence of aberrant CD3 expression. Our data shows marked CD3ζ in association with the α-synuclein containing pathological lesions, i.e., Lewy bodies and Lewy neurites, in the brains of subjects with Parkinson's disease and Lewy body dementia. This finding raises the novel concept of CD3 dysregulation in these disorders as a pathogenic factor and also furthers the increasing evidence that the recall of aberrant neurodevelopmental processes underlies the pathogenesis of neurodegenerative diseases.
  •  
2.
  • Muresanu, Dafin F., et al. (author)
  • Diabetes exacerbates brain pathology following a focal blast brain injury : New role of a multimodal drug cerebrolysin and nanomedicine
  • 2020
  • In: Neuropharmacology of Neuroprotection. - : ELSEVIER. - 9780128208137 ; 258, s. 285-367
  • Book chapter (peer-reviewed)abstract
    • Blast brain injury (bBI) is a combination of several forces of pressure, rotation, penetration of sharp objects and chemical exposure causing laceration, perforation and tissue losses in the brain. The bBI is quite prevalent in military personnel during combat operations. However, no suitable therapeutic strategies are available so far to minimize bBI pathology. Combat stress induces profound cardiovascular and endocrine dysfunction leading to psychosomatic disorders including diabetes mellitus (DM). This is still unclear whether brain pathology in bBI could exacerbate in DM. In present review influence of DM on pathophysiology of bBI is discussed based on our own investigations. In addition, treatment with cerebrolysin (a multimodal drug comprising neurotrophic factors and active peptide fragments) or H-290/51 (a chain-breaking antioxidant) using nanowired delivery of for superior neuroprotection on brain pathology in bBI in DM is explored. Our observations are the first to show that pathophysiology of bBI is exacerbated in DM and TiO2-nanowired delivery of cerebrolysin induces profound neuroprotection in bBI in DM, not reported earlier. The clinical significance of our findings with regard to military medicine is discussed.
  •  
3.
  • Niu, Feng, et al. (author)
  • Co-administration of TiO2-nanowired DL-3-n-butylphthalide (DL-NBP) and mesenchymal stem cells enhanced neuroprotection in Parkinson's disease exacerbated by concussive head injury
  • 2020
  • In: Neuropharmacology of Neuroprotection. - : ELSEVIER. - 9780128208137 ; , s. 101-155
  • Book chapter (peer-reviewed)abstract
    • DL-3-n-butylphthalide (DL-NBP) is a powerful antioxidant compound with profound neuroprotective effects in stroke and brain injury. However, its role in Parkinson's disease (PD) is not well known. Traumatic brain injury (TBI) is one of the key factors in precipitating PD like symptoms in civilians and particularly in military personnel. Thus, it would be interesting to explore the possible neuroprotective effects of NBP in PD following concussive head injury (CHI). In this chapter effect of nanowired delivery of NBP together with mesenchymal stem cells (MSCs) in PD with CHI is discussed based on our own investigations. It appears that CHI exacerbates PD pathophysiology in terms of p-tau, alpha-synuclein (ASNC) levels in the cerebrospinal fluid (CSF) and the loss of TH immunoreactivity in substantia niagra pars compacta (SNpc) and striatum (STr) along with dopamine (DA), dopamine decarboxylase (DOPAC). And homovanillic acid (HVA). Our observations are the first to show that a combination of NBP with MSCs when delivered using nanowired technology induces superior neuroprotective effects in PD brain pathology exacerbated by CHI, not reported earlier.
  •  
4.
  • Niu, Feng, et al. (author)
  • Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury
  • 2021
  • In: Progress in Brain Research. - Amsterdam : Elsevier. - 0079-6123 .- 1875-7855. ; 265, s. 139-230, s. 139-230
  • Journal article (peer-reviewed)abstract
    • Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims.Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224 N results in profound progressive functional deficit, memory impairment and brain pathology from 5 h after trauma that continued over several weeks of injury.In this investigation we report that TiO2 nanowired delivery of oxiracetam (50 mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100 mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
  •  
5.
  • Ozkizilcik, Asya, et al. (author)
  • Nanodelivery of cerebrolysin reduces pathophysiology of Parkinson's disease
  • 2019
  • In: NANONEUROPROTECTION AND NANONEUROTOXICOLOGY. - : ACADEMIC PRESS LTD-ELSEVIER SCIENCE LTD. - 9780444642080 ; , s. 201-246
  • Book chapter (peer-reviewed)abstract
    • Parkinson's disease (PD) is affecting >10 million people worldwide for which no suitable cure has been developed so far. Roughly, about two people per thousand populations are affected with PD like symptoms especially over the age of 50. About 1% of the populations above 60 years suffer from PD-like disease. The prevalence of the disease is increasing over the years, and future projections by 2020 could be 12-14 millions people affected by the disease. Thus, exploration of suitable therapeutic measures is the need of the hour to enhance quality of the life of PD patients. PD induced brain pathology includes loss of dopaminergic neurons in the substantia niagra that could later extends to other cortical regions causing loss of voluntary motor control. Deposition of alpha-synuclein in the brain further leads to neurodegeneration. However, the exact cause of PD is still unknown. It appears that breakdown of the blood-brain barrier (BBB) and leakage of serum component into the brain could lead to neurodegeneration in PD. Thus, novel treatment strategies that are able to restore BBB breakdown and enhance neuronal plasticity and neuroregeneration in PD could be effective in future therapy. With the advancement of nanotechnology, it is worthwhile to understand the role of nanodelivery of selected agents in PD to enhance neuroprotection. In this review new role of BBB, brain edema, and neuropathology in PD is discussed. In addition, superior neuroprotection induced by nanowired delivery of a multimodal drug cerebrolysin in PD is summarized based on our own investigations.
  •  
6.
  • Patnaik, Ranjana, et al. (author)
  • Histamine H3 Inverse Agonist BF 2649 or Antagonist with Partial H4 Agonist Activity Clobenpropit Reduces Amyloid Beta Peptide-Induced Brain Pathology in Alzheimer's Disease
  • 2018
  • In: Molecular Neurobiology. - : Humana Press. - 0893-7648 .- 1559-1182. ; 55:1, s. 312-321
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) is one of the leading causes for disability and death affecting millions of people worldwide. Thus, novel therapeutic strategies are needed to reduce brain pathology associated with AD. In view of increasing awareness regarding involvement of histaminergic pathways in AD, we explored the role of one H3 receptor inverse agonist BF 2649 and one selective H3 receptor antagonist with partial H4 agonist activity in amyloid beta peptide (A beta P) infusion-induced brain pathology in a rat model. AD-like pathology was produced by administering A beta P (1-40) intracerebroventricular (i.c.v.) in the left lateral ventricle (250 ng/10 mu l, once daily) for 4 weeks. Control rats received saline. In separate group of rats, either BF 2649 (1 mg/kg, i.p.) or clobenpropit (1 mg/kg, i.p.) was administered once daily for 1 week after 3weeks of A beta P administration. After 30 days, blood-brain barrier (BBB) breakdown, edema formation, neuronal, glial injuries, and A beta P deposits were examined in the brain. A significant reduction in A beta P deposits along with marked reduction in neuronal or glial reactions was seen in the drug-treated group. The BBB breakdown to Evans blue albumin and radioiodine in the cortex, hippocampus, hypothalamus, and cerebellum was also significantly reduced in these drug-treated groups. Clobenpropit showed superior effects than the BF2649 in reducing brain pathology in AD. Taken together, our observations are the first to show that blockade of H3 and stimulation of H4 receptors are beneficial for the treatment of AD pathology, not reported earlier.
  •  
7.
  • Sahib, Seaab, et al. (author)
  • Cerebrolysin enhances spinal cord conduction and reduces blood-spinal cord barrier breakdown, edema formation, immediate early gene expression and cord pathology after injury
  • 2020. - 1
  • In: Neuropharmacology of Neuroprotection. - Amsterdam : Elsevier. - 9780128208137 - 9780128208144 ; , s. 397-438
  • Book chapter (peer-reviewed)abstract
    • Spinal cord evoked potentials (SCEP) are good indicators of spinal cord function in health and disease. Disturbances in SCEP amplitudes and latencies during spinal cord monitoring predict spinal cord pathology following trauma. Treatment with neuroprotective agents preserves SCEP and reduces cord pathology after injury. The possibility that cerebrolysin, a balanced composition of neurotrophic factors improves spinal cord conduction, attenuates blood-spinal cord barrier (BSCB) disruption, edema formation, and cord pathology was examined in spinal cord injury (SCI). SCEP is recorded from epidural space over rat spinal cord T9 and T12 segments after peripheral nerves stimulation. SCEP consists of a small positive peak (MPP), followed by a prominent negative peak (MNP) that is stable before SCI. A longitudinal incision (2mm deep and 5mm long) into the right dorsal horn (T10 and T11 segments) resulted in an immediate long-lasting depression of the rostral MNP with an increase in the latencies. Pretreatment with either cerebrolysin (CBL 5mL/kg, i.v. 30min before) alone or TiO2 nanowired delivery of cerebrolysin (NWCBL 2.5mL/kg, i.v.) prevented the loss of MNP amplitude and even enhanced further from the pre-injury level after SCI without affecting latencies. At 5h, SCI induced edema, BSCB breakdown, and cell injuries were significantly reduced by CBL and NWCBL pretreatment. Interestingly this effect on SCEP and cord pathology was still prominent when the NWCBL was delivered 2min after SCI. Moreover, expressions of c-fos and c-jun genes that are prominent at 5h in untreated SCI are also considerably reduced by CBL and NWCBL treatment. These results are the first to show that CBL and NWCBL enhanced SCEP activity and thwarted the development of cord pathology after SCI. Furthermore, NWCBL in low doses has superior neuroprotective effects on SCEP and cord pathology, not reported earlier. The functional significance and future clinical potential of CBL and NWCBL in SCI are discussed.
  •  
8.
  • Sahib, Seaab, et al. (author)
  • Nanodelivery of traditional Chinese Gingko Biloba extract EGb-761 and bilobalide BN-52021 induces superior neuroprotective effects on pathophysiology of heat stroke
  • 2021
  • In: Progress in Brain Research. - : Elsevier. - 0079-6123 .- 1875-7855. ; 265, s. 249-315, s. 249-315
  • Journal article (peer-reviewed)abstract
    • Military personnel often exposed to high summer heat are vulnerable to heat stroke (HS) resulting in abnormal brain function and mental anomalies. There are reasons to believe that leakage of the blood-brain barrier (BBB) due to hyperthermia and development of brain edema could result in brain pathology. Thus, exploration of suitable therapeutic strategies is needed to induce neuroprotection in HS. Extracts of Gingko Biloba (EGb-761) is traditionally used in a variety of mental disorders in Chinese traditional medicine since ages. In this chapter, effects of TiO2 nanowired EGb-761 and BN-52021 delivery to treat brain pathologies in HS is discussed based on our own investigations. We observed that TiO2 nanowired delivery of EGb-761 or TiO2 BN-52021 is able to attenuate more that 80% reduction in the brain pathology in HS as compared to conventional drug delivery. The functional outcome after HS is also significantly improved by nanowired delivery of EGb-761 and BN-52021. These observations are the first to suggest that nanowired delivery of EGb-761 and BN-52021 has superior therapeutic effects in HS not reported earlier. The clinical significance in relation to the military medicine is discussed.
  •  
9.
  • Sharma, Aruna, et al. (author)
  • 5-Hydroxytryptophan : A precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology
  • 2019
  • In: New Therapeutic Strategies for Brain Edema and Cell Injury. - : Elsevier. - 9780128167540 ; , s. 1-44
  • Book chapter (peer-reviewed)abstract
    • 5-Hydroxytryptophan (5-HTP), a precursor of serotonin, is therapeutically used for several psychiatric disorders such as anxiety and depression in the clinic. However, severe side effects, including abnormal mental functions, behavioral disturbances and intolerance are associated with this treatment. 5-HTP-induced elevation of plasma and brain serotonin levels may affect blood-brain barrier (BBB) breakdown, edema formation and regional cerebral blood flow (CBF) disturbances. Breakdown of BBB to serum proteins leads to vasogenic brain edema formation and cellular injuries. However, 5-HTP-neurotoxicity is still not well known. In this investigations 5-HTP induced elevation of endogenous plasma and brain serotonin levels and its effect on BBB breakdown, edema formation neuronal injuries was examined in a rat model. Furthermore, potential role of oxidative stress and nitric oxide (NO) was evaluated. In addition, several neurochemical agents such as p-CPA (5-HT synthesis inhibitor) indomethacin (prostaglandin synthase inhibitor), diazepam (ant stress drug), cyproheptadine, ketanserin (5-HT2 receptor antagonists) and vinblastine (inhibitor of microtubule function) were examined on 5-HT neurotoxicity. Our observations suggest that 4h after 5-HTP administrations, the endogenous serotonin levels increased by fourfold (150mg/kg) in the plasma and brain associated with profound hyperthermia (+3.86 +/- 0.24 degrees C, oxidative stress and NO upregulation. Breakdown of the BBB to Evans blue albumin (EBA) in 8 brain regions and to ([131])Iodine in 14 brain regions was observed. The CBF exhibited marked reduction in all the brain regions examined. Brain edema and cellular injuries are present in the areas associated with BBB disruption. Drug treatments reduced the BBB breakdown, edema formation NO production and brain pathology. These observations are the first to point out that 5-HTP-neurotoxicity caused by BBB breakdown, edema formation and NO production is instrumental in causing adverse mental and behavioral abnormalities, not reported earlier.
  •  
10.
  • Sharma, Aruna, et al. (author)
  • Concussive head injury exacerbates neuropathology of sleep deprivation : Superior neuroprotection by co-administration of TiO2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells
  • 2020
  • In: Neuropharmacology of Neuroprotection. - : ELSEVIER. - 9780128208137 ; , s. 1-77
  • Book chapter (peer-reviewed)abstract
    • Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (alpha-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of alpha-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of alpha-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in alpha-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-alpha). Exogenous administration of alpha-MSH (250 mu g/kg) together with MSCs (1 x 10(6)) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of alpha-MSH (100 mu g), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of alpha-MSH and BDNF and decreased the TNF-alpha in SD with CHI. These observations are the first to show that TiO2 nanowired administration of alpha-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view