SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cetinkaya Cihan) "

Search: WFRF:(Cetinkaya Cihan)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cetinkaya, Cihan, et al. (author)
  • Age dependence of tumor genetics in unfavorable neuroblastoma : arrayCGH profiles of 34 consecutive cases, using a Swedish 25-year neuroblastoma cohort for validation
  • 2013
  • In: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 13, s. 231-
  • Journal article (peer-reviewed)abstract
    • Background: Aggressive neuroblastoma remains a significant cause of childhood cancer death despite current intensive multimodal treatment protocols. The purpose of the present work was to characterize the genetic and clinical diversity of such tumors by high resolution arrayCGH profiling. Methods: Based on a 32K BAC whole-genome tiling path array and using 50-250K Affymetrix SNP array platforms for verification, DNA copy number profiles were generated for 34 consecutive high-risk or lethal outcome neuroblastomas. In addition, age and MYCN amplification (MNA) status were retrieved for 112 unfavorable neuroblastomas of the Swedish Childhood Cancer Registry, representing a 25-year neuroblastoma cohort of Sweden, here used for validation of the findings. Statistical tests used were: Fisher's exact test, Bayes moderated t-test, independent samples t-test, and correlation analysis. Results: MNA or segmental 11q loss (11q-) was found in 28/34 tumors. With two exceptions, these aberrations were mutually exclusive. Children with MNA tumors were diagnosed at significantly younger ages than those with 11q-tumors (mean: 27.4 vs. 69.5 months; p=0.008; n=14/12), and MNA tumors had significantly fewer segmental chromosomal aberrations (mean: 5.5 vs. 12.0; p<0.001). Furthermore, in the 11q-tumor group a positive correlation was seen between the number of segmental aberrations and the age at diagnosis (Pearson Correlation 0.606; p=0.037). Among nonMNA/non11q-tumors (n=6), one tumor displayed amplicons on 11q and 12q and three others bore evidence of progression from low-risk tumors due to retrospective evidence of disease six years before diagnosis, or due to tumor profiles with high proportions of numerical chromosomal aberrations. An early age at diagnosis of MNA neuroblastomas was verified by registry data, with an average of 29.2 months for 43 cases that were not included in the present study. Conclusion: MNA and segmental 11q loss define two major genetic variants of unfavorable neuroblastoma with apparent differences in their pace of tumor evolution and in genomic integrity. Other possible, but less common, routes in the development of aggressive tumors are progression of low-risk infant-type lesions, and gene amplifications other than MYCN. Knowledge on such nosological diversity of aggressive neuroblastoma might influence future strategies for therapy.
  •  
2.
  • Cetinkaya, Cihan, et al. (author)
  • Combined IFN-gamma and retinoic acid treatment targets the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in MYCN-amplified neuroblastoma cells
  • 2007
  • In: Molecular Cancer Therapeutics. - 1535-7163 .- 1538-8514. ; 6:10, s. 2634-2641
  • Journal article (peer-reviewed)abstract
    • The MYCN protooncogene is involved in the control of cell proliferation, differentiation, and survival of neuroblasts. Deregulation of MYCN by gene amplification contributes to neuroblastoma development and is strongly correlated to advanced disease and poor outcome, emphasizing the urge for new therapeutic strategies targeting MYCN function. The transcription factor N-Myc, encoded by MYCN, regulates numerous genes together with its partner Max, which also functions as a cofactor for the Mad/Mnt family of Myc antagonists/transcriptional repressors. We and others have previously reported that IFN-gamma synergistically potentiates retinoic acid (RA)induced sympathetic differentiation and growth inhibition in neuroblastoma cells. This study shows that combined treatment of MYCN-amplified neuroblastorna cells with RA+IFN-gamma down-regulates N-Myc protein expression through increased protein turnover, up-regulates Mad1 mRNA and protein, and reduces N-Myc/Max heteroclimerization. This results in a shift of occupancy at the ornithine decarboxylase N-Myc/Mad1 target promoter in vivo from N-Myc/Max to Madl/Max predominance, correlating with histone H4 deacetylation, indicative of a chromatin structure typical of a transcriptionally repressed state. This is further supported by data showing that RA + IFN-gamma treatment strongly represses expression of N-Myc/Mad1 target genes ornithine decarboxylase and hTERT. Our results suggest that combined IFN-gamma and RA signaling can form a basis for new therapeutic strategies targeting N-Myc function for patients with high-risk, MYCN-amplified neuroblastoma.
  •  
3.
  • Guzhova, Irina, et al. (author)
  • Interferon-gamma cooperates with retinoic acid and phorbol ester to induce differentiation and growth inhibition of human neuroblastoma cells
  • 2001
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 94:1, s. 97-108
  • Journal article (peer-reviewed)abstract
    • The prognosis of patients with advanced stages of neuroblastoma with N-myc amplification remains poor despite escalated therapy, a situation that has called for alternative therapeutic approaches. Neuroblastoma cells, which represent immature peripheral neuronal cells, treated with certain physiologic and nonphysiologic agents such as retinoic acid (RA), phorbol esters and interferons (IFN) in vitro undergo cellular differentiation and stop to divide, a process that mimics normal neuronal development. Such "differentiation therapy" using RA after autologous bone marrow transplantation has recently given encouraging results in neuroblastoma patients with advanced disease. Considering approaches for improved differentiation therapy, we investigated possible synergistic effects of combining agents known to influence neuroblastoma growth and differentiation in vitro. Our results show that combined treatment with IFN-gamma and RA or the phorbol ester 12-O-tetradecanoyl-phorbol acetate (TPA) had synergistic or enhancing effects on morphologic differentiation and neurite outgrowth in 5 of 5 neuroblastoma cell lines, 3 of which expressed very high levels of N-myc mRNA due to N-myc amplification. The combinations RA+IFN-gamma or TPA+IFN-gamma also enhanced induced growth inhibition in all 5 cell lines, in several cases resulting in complete growth arrest under conditions where cells stimulated with either agent alone continued to grow. The phenotypic effects of the combined RA+IFN-gamma or TPA+IFN-gamma treatments were in most, but not all, investigated cases accompanied by moderate reductions in N-myc expression, suggesting that the cooperative signals may counteract N-Myc activity at several levels. The cooperativity between IFN-gamma and other differentiation signals may be relevant for approaches to improve the therapy for high-risk neuroblastoma with N-myc-amplification.
  •  
4.
  •  
5.
  •  
6.
  • Wu, Siqin, et al. (author)
  • TGF-beta enforces senescence in Myc-transformed hematopoietic tumor cells through induction of Mad1 and repression of Myc activity
  • 2009
  • In: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 315:18, s. 3099-3111
  • Journal article (peer-reviewed)abstract
    • Inhibition of tumor growth factor (TGF)-beta-mediated cell cycle exit is considered an important tumorigenic function of Myc oncoproteins. Here we found that TGF-beta1 enforced G(1) cell cycle arrest and cellular senescence in human U-937 myeloid tumor cells ectopically expressing v-Myc, which contains a stabilizing mutation frequently found in lymphomas. This correlated with induced expression of the Myc antagonist Mad1, resulting in replacement of Myc for Mad1 at target promoters, reduced histone acetylation and strong repression of Myc-driven transcription. The latter was partially reversed by histone deacetylase (HDAC) inhibitors, consistent with involvement of Mad1. Importantly, knockdown of MAD1 expression prevented TGF-beta1-induced senescence, underscoring that Mad1 is a crucial component of this process. Enforced Mad1 expression sensitized U-937-myc cells to TGF-beta and restored phorbol ester-induced cell cycle exit, but could not alone induce G(1) arrest, suggesting that Mad1 is required but not sufficient for cellular senescence. Our results thus demonstrate that TGF-beta can override Myc activity despite a stabilizing cancer mutation and induce senescence in myeloid tumor cells, at least in part by induction of Mad1. TGF-beta-induced senescence, or signals mimicking this pathway, could therefore potentially be explored as a therapeutic principle for treating hematopoietic and other tumors with deregulated MYC expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view