SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chafik Léon) "

Sökning: WFRF:(Chafik Léon)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arunraj, Kondetharayil Soman, et al. (författare)
  • Linking Coherent Anticyclonic Eddies in the Iceland Basin to Decadal Oceanic Variability in the Subpolar North Atlantic
  • 2022
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 127:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The Iceland Basin in the eastern Subpolar North Atlantic is an eddy-rich region characterized by intense anticyclonic eddy activity. Our study present the variability of coherent Anticyclonic Eddies (AEs) generated in this region, using satellite altimetry and two ocean eddy tracking algorithms. The yearly count of AEs in the Iceland Basin reveals a decadal variability similar to that of ocean heat content change in the eastern subpolar gyre. Periods with higher number of AEs coincide with periods of increased ocean heat content, and vice versa. However, both algorithms agree that more than 50% of the detected AEs are confined to the central Iceland Basin. The annual number of AEs also tracks zonal shifts of the subpolar front, a variable that can explain about 53 (77)% of the interannual (decadal) variability of AEs in the Iceland Basin. Finally, a Lagrangian approach is used to demonstrate that the amount of subtropical versus subpolar water masses reaching the Iceland Basin appears to influence, via baroclinic instability, the generation of AEs.
  •  
2.
  • Berntell, Ellen, et al. (författare)
  • Representation of Multidecadal Sahel Rainfall Variability in 20th Century Reanalyses
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Summer rainfall in the Sahel region has exhibited strong multidecadal variability during the 20th century causing dramatic human and socio-economic impacts. Studies have suggested that the variability is linked to the Atlantic multidecadal variability; a spatially persistent pattern of warm/cold sea surface temperatures in the North Atlantic. In the last few years, several promising century-long reanalysis datasets have been made available, opening up for further studies into the dynamics inducing the observed low-frequency rainfall variability in Sahel. We find that although three of the 20th century ECMWF reanalyses show clear multidecadal rainfall variability with extended wet and dry periods, the timing of the multidecadal variability in two of these reanalyses is found to exhibit almost anti-phase features for a large part of the 20th century when compared to observations. The best representation of the multidecadal rainfall variability is found in the ECMWF reanalysis that, unlike the other reanalyses (including NOAA's 20th century), do not assimilate any observations and may well be a critical reason for this mismatch, as discussed herein. This reanalysis, namely ERA-20CM, is thus recommended for future studies on the dynamics driving the multidecadal rainfall variability in Sahel and its linkages to the low-frequency North Atlantic oceanic temperatures.
  •  
3.
  •  
4.
  • Broomé, Sara, et al. (författare)
  • A Satellite-Based Lagrangian Perspective on Atlantic Water Fractionation Between Arctic Gateways
  • 2021
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 126:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Warm Atlantic Water reaches the Arctic Ocean via two gateways: the Barents Sea Opening (BSO) and Fram Strait. Here, we study the near-surface flow of the Atlantic Water in the Nordic Seas and its fractionation between these Arctic gateways, using simulated Lagrangian trajectories based on satellite altimetry for 1994–2018. Lagrangian particles are released in the eastern Nordic Seas, where Atlantic Water flows poleward in two current cores: an inner branch along the Norwegian Continental Slope and an outer sea ward branch. The trajectories toward Fram Strait and the BSO are, in an averaged sense, largely steered by the bottom topography, and on inter-annual timescales we find an anticorrelation in the number of particles that reach the two gateways. Most of the particles released in the inner branch enter the Barents Sea and most of the particles seeded in the outer branch reach Fram Strait. However, there is a significant cross-over of particles from the outer to the inner branch in the Lofoten Basin, and nearly half of the total number of particles entering the BSO originate in the outer branch. This cross-over is accomplished solely by the time-fluctuating part of the velocity field, and it becomes stronger when the eddy kinetic energy in the Lofoten Basin is anomalously high. Thus, the outer branch may, via processes in the Lofoten Basin, be important for Barents Sea climate variability.
  •  
5.
  • Broomé, Sara, 1989- (författare)
  • Atlantic Water in the Nordic Seas : A satellite altimetry perspective on ocean circulation
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Atlantic Water in the Nordic Seas contributes to the mild climate of Northern Europe and is the main oceanic source of heat for the Arctic. The northward bound transport of the warm and saline Atlantic Water is mediated by a topographically constrained cyclonic boundary current along the Norwegian continental slope. The analysis within this thesis is based on satellite observations of dynamic Sea Surface Heights (SSH) from 1993 to the recent present, combined with both hydrographic observations and modelling. It provides some new perspectives and results, as well as corroborates the essential role of bottom topography for the circulation in the Nordic Seas.In the first part of the thesis, the topographic constraint is used in the analysis by examining the satellite-derived SSH along topographic contours. We find stationary along-contour anomalies that indicate deviations from strict topographic steering. However, we show that these deviations are dynamically consistent with, and can be explained by, potential vorticity conservation in an adiabatic steady-state model for flow over a topographic slope. The analysis along topographic contours is further developed to study northward-propagating, low-frequency ocean temperature signals. These signals have an expression in the SSH and their propagation speed is remarkably slow compared to the current speed. We propose a conceptual model of shear dispersion effects, in which the effective advection speed of a tracer is determined not only by the rapid current core, but by a mean velocity taken over the cross-flow extent of Atlantic Water. The model predicts a reduced effective tracer advection velocity, comparable to the one observed.The close connection between anomalies in SSH and heat content is further used to study decadal variability in the Nordic Seas. There is a shift in decadal trends in the mid-2000s, from a period of strong increase in SSH and heat content to a more stagnant period. We find this variability to be forced remotely, rather than by local air-sea heat fluxes. By developing a conceptual model of ocean heat convergence, we are able to explain the broad features of the decadal changes with the temperature variability of the inflowing Atlantic Water from the subpolar North Atlantic.In the final part of the thesis, satellite-derived surface geostrophic velocity fields are used as input to a Lagrangian trajectory model. Based on this, we study the fractionation of the Atlantic Water in the Nordic Seas between the two straits towards the Arctic Ocean: the Barents Sea Opening and the Fram Strait. This Lagrangian approach also provides insights on the origin of the water that reach the straits. We find that it is the frontal current branch, rather than the slope current, that contributes to the variability of the Barents Sea Opening inflow of warm Atlantic Water, and thus potentially to the climate of the Barents Sea and its sea ice cover.
  •  
6.
  • Broomé, Sara, 1989-, et al. (författare)
  • Mechanisms of decadal changes in sea surface height and heat content in the eastern Nordic Seas
  • 2020
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 16:3, s. 715-728
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Seas constitute the main ocean conveyor of heat between the North Atlantic Ocean and the Arctic Ocean. Although the decadal variability in the subpolar North Atlantic has been given significant attention lately, especially regarding the cooling trend since the mid-2000s, less is known about the potential connection downstream in the northern basins. Using sea surface heights from satellite altimetry over the past 25 years (1993–2017), we find significant variability on multiyear to decadal timescales in the Nordic Seas. In particular, the regional trends in sea surface height show signs of a weakening since the mid-2000s, as compared to the rapid increase in the preceding decade since the early 1990s. This change is most prominent in the Atlantic origin waters in the eastern Nordic Seas and is closely linked, as estimated from hydrography, to heat content. Furthermore, we formulate a simple heat budget for the eastern Nordic Seas to discuss the relative importance of local and remote sources of variability; advection of temperature anomalies in the Atlantic inflow is found to be the main mechanism. A conceptual model of ocean heat convergence, with only upstream temperature measurements at the inflow to the Nordic Seas as input, is able to reproduce key aspects of the decadal variability in the heat content of the Nordic Seas. Based on these results, we argue that there is a strong connection with the upstream subpolar North Atlantic. However, although the shift in trends in the mid-2000s is coincident in the Nordic Seas and the subpolar North Atlantic, the eastern Nordic Seas have not seen a reversal of trends but instead maintain elevated sea surface heights and heat content in the recent decade considered here.
  •  
7.
  •  
8.
  • Chafik, Léon, et al. (författare)
  • Discovery of an unrecognized pathway carrying overflow waters toward the Faroe Bank Channel
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The dense overflow waters of the Nordic Seas are an integral link and important diagnostic for the stability of the Atlantic Meridional Overturning Circulation (AMOC). The pathways feeding the overflow remain, however, poorly resolved. Here we use multiple observational platforms and an eddy-resolving ocean model to identify an unrecognized deep flow toward the Faroe Bank Channel. We demonstrate that anticyclonic wind forcing in the Nordic Seas via its regulation of the basin circulation plays a key role in activating an unrecognized overflow path from the Norwegian slope - at which times the overflow is anomalously strong. We further establish that, regardless of upstream pathways, the overflows are mostly carried by a deep jet banked against the eastern slope of the Faroe-Shetland Channel, contrary to previous thinking. This deep flow is thus the primary conduit of overflow water feeding the lower branch of the AMOC via the Faroe Bank Channel. The authors show that overflow waters flowing toward the Faroe Bank Channel can take a previously unidentified path to the Faroe-Shetland Channel where it joins an unrecognized deep-reaching jet located along its eastern rather than its western boundary.
  •  
9.
  • Chafik, Léon, 1985- (författare)
  • Dynamics and Variability of the Circulation in the North-Atlantic Subpolar Seas
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis deals with the dynamics and circulation in the northern North Atlantic and the Nordic Seas, processes of crucial importance for the mild climate of Scandinavia and Northern Europe. High-resolution ADCP scans of currents from Greenland to Scotland in the top 400 m demonstrate that the Reykjanes Ridge is a very effective separator of flow towards the Nordic and Labrador Seas, respectively. It was found that the meridional overturning circulation has weakened by ~1.7 Sv (1 Sv = 106 m3 s-1) during the 18-year period when altimetric data were available. This trend may be an effect of the Atlantic Multidecadal Oscillation, but is certainly not due to the North Atlantic Oscillation (NAO). By studying the circulation in the Faroe-Shetland Channel, which is an important choke point for the global thermohaline circulation, it was concluded that the contraction of the Norwegian-Sea gyre during low NAO periods plays an important role for disturbing the flow pattern. This specifically affects the regional ocean climate by leading to an accumulation of warm and saline Atlantic waters in the channel. During high NAO phases the circulation is strongly topographically controlled. The Norwegian Atlantic Slope Current (NwASC) is the main flow branch linking the North Atlantic to the Arctic and Barents Sea. It was found that the NwASC is largely coherent over seasonal to interannual time-scales. However, on shorter time-scales the coherency of the flow shows a sustained and pronounced weakening downstream of Lofoten. Intense eddy-shedding from the slope into the Lofoten Basin damps the coherent structure of the flow. The eddies take about two months to propagate to and to merge with the semi-permanent anticyclonic vortex above the deepest part of the Lofoten Basin. These results have implications for how flow/hydrographic anomalies are transferred through the Nordic Seas towards the Arctic. Anomalous transports of warm water into the Arctic and Barents Sea via the NwASC are found to be driven by a combination of the NAO and the other two leading modes of atmospheric variability in the North Atlantic. The results reported in the thesis may be of importance for achieving a correct representation of the heat conveyed polewards in climate models.
  •  
10.
  • Chafik, Léon, et al. (författare)
  • North Atlantic Ocean Circulation and Decadal Sea Level Change During the Altimetry Era
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Regional sea-level rise is characterized by decadal acceleration and deceleration periods that typically stem from oceanic climate variability. Here, we investigate decadal sea-level trends during the altimetry era and pin down the associated ocean circulation changes. We find that decadal subpolar gyre cooling (warming), strengthening (weakening), widening (shrinking) since the mid-2000s (early 1990s) resulted in negative (positive) sea level trends of −7.1 mm/yr ± 1.3 mm/yr (3.9 mm/yr ± 1.5 mm/yr). These large-scale changes further coincide with steric sea-level trends, and are driven by decadal-scale ocean circulation variability. Sea level on the European shelf, however, is found to correlate well with along-slope winds (R = 0.78), suggesting it plays a central role in driving the associated low-frequency dynamic sea level variability. Furthermore, when the North Atlantic is in a cooling (warming) period, the winds along the eastern boundary are predominantly from the North (South), which jointly drive a slowdown (rapid increase) in shelf and coastal sea level rise. Understanding the mechanisms that produce these connections may be critical for interpreting future regional sea-level trends.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42
Typ av publikation
tidskriftsartikel (36)
doktorsavhandling (3)
annan publikation (2)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (36)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Chafik, Léon (28)
Chafik, Léon, 1985- (12)
Zhang, Qiong (5)
Nilsson, Johan (4)
Reverdin, Gilles (4)
Lundberg, Peter (2)
visa fler...
Pausata, Francesco S ... (2)
Nilsson, Johan, 1965 ... (2)
Becker, M (1)
Nilsson, J. (1)
Olsen, A (1)
Zhang, Peng (1)
Wilkinson, Jeremy (1)
Li, F. (1)
Linderholm, Hans W., ... (1)
Chen, Deliang, 1961 (1)
de Boer, Agatha M. (1)
Weyhenmeyer, Gesa A. (1)
Sjolte, Jesper (1)
Björck, Svante (1)
Seneviratne, S. I. (1)
Schenk, Frederik (1)
Muschitiello, France ... (1)
Schrum, Corinna (1)
May, Wilhelm (1)
Allard, Bert, 1945- (1)
Gaillard, Marie-José ... (1)
Körnich, Heiner (1)
Caballero, Rodrigo (1)
Sahlée, Erik (1)
Rutgersson, Anna, 19 ... (1)
Stigebrandt, Anders, ... (1)
Kjellström, Erik (1)
Murtagh, Donal, 1959 (1)
Evans, D G (1)
Goni, Gustavo (1)
Hamlington, Benjamin ... (1)
Arunraj, Kondetharay ... (1)
Berg, P. (1)
Sporre, Moa K. (1)
Guinet, Christophe (1)
Ou, Tinghai (1)
Battisti, David S. (1)
Johannessen, T. (1)
Jansen, Teunis (1)
Rodhe, Henning (1)
Nycander, Jonas, Pro ... (1)
Berntell, Ellen (1)
Frajka-Williams, Ele ... (1)
Harada, Yayoi (1)
visa färre...
Lärosäte
Stockholms universitet (42)
Göteborgs universitet (1)
Uppsala universitet (1)
Örebro universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
visa fler...
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (42)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (41)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy