SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Channell J. E. T.) "

Search: WFRF:(Channell J. E. T.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Pälike, Heiko, et al. (author)
  • A Cenozoic record of the equatorial Pacific carbonate compensation depth
  • 2012
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 488:7413, s. 609-614
  • Journal article (peer-reviewed)abstract
    • Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.
  •  
2.
  • Capraro, L., et al. (author)
  • Chronology of the Lower-Middle Pleistocene succession of the south-western part of the Crotone Basin (Calabria, Southern Italy)
  • 2011
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 30:9-10, s. 1185-1200
  • Journal article (peer-reviewed)abstract
    • Biostratigraphy based on calcareous nannofossils, integrated by magnetostratigraphic, geochronological and isotopic data, allowed establishing a precise chronological framework for the Pleistocene succession within the south-western sector of the Crotone Basin (Calabria, Southern Italy), where the Pliocene-Pleistocene global stratotype section and point is defined, thus demonstrating that sedimentation was quasi-continuous during most of the Lower and Middle Pleistocene. At a large scale, the Pleistocene succession in this sector of the Crotone Basin is characterized by an evident shallowing-upwards trend, showing facies changes from bathyal to shelfal to littoral/continental. However, comparison between adjacent sectors within the investigated area demonstrates that stratigraphic architectures change vastly on very short distances. Our chronological constraints indicate that such changes in sedimentation styles probably occurred in response to differential subsidence rates, which originated tectonically-controlled synsedimentary structures where accommodation space and sediment yield were allotted unevenly. This articulated physiography led to striking differences in the overall thicknesses and organization of Pleistocene stratigraphies and, eventually, to a distinct diachroneity in the first appearance of shallow-marine deposits. In addition, superimposed are complex interplays between regional and local tectonics, eustasy and orbitally-forced climate changes. These interactions have been highlighted by the oxygen isotope stratigraphy established for a part of the studied succession, which is likely to document almost continuously the interval from Marine Isotope Stage (MIS) 26 to MIS 17. In its younger part (post-MIS 17), chronological ties are poor, as the succession is dominated by shallow-water to continental deposits showing a prominent organization into cyclothems. Nevertheless, based on the chronology of the underlying units, it is feasible that basin infill ended during MIS 15-MIS 14 times.
  •  
3.
  • Channell, J.E.T., et al. (author)
  • Relative paleointensity (RPI) in the latest Pleistocene (10–45 ka) and implications for deglacial atmospheric radiocarbon
  • 2018
  • In: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 191, s. 57-72
  • Journal article (peer-reviewed)abstract
    • We report magnetic properties and relative paleointensity (RPI) proxies from a suite of 10 conventional piston cores and Kasten cores from the SW Iberian Margin collected during cruise JC089 of the RSS James Cook in August 2013. Mean sedimentation rates are in the 10–20 cm/kyr range. Age models were acquired by correlation of Ca/Ti and Zr/Sr XRF core-scanning data to L* reflectance from the Cariaco Basin that is, in turn, tied to the Greenland ice-core chronology. The natural remanent magnetization (NRM) is represented by a single magnetization component carried by a low-coercivity mineral (magnetite), although reflectance and bulk magnetic properties indicate the presence of a high-coercivity (hematitic) magnetic phase, possibly from eolian dust. The presence of fine-grained hematite means that the sediments are not ideal for RPI studies, however the detrital hematite does not appear to contribute to the NRM or anhysteretic remanent magnetization (ARM). In order to test the usefulness of the RPI data, we construct a stack of 12 RPI records from the SW Iberian Margin for the 0–45 ka interval and compare it with a stack of 12 globally distributed marine and lake records, chosen on the basis of mean sedimentation rates (>15 cm/kyr) and superior age models. The two stacks are similar, but different from published RPI stacks, particularly for the 10–30 ka interval, and imply a virtual axial dipole moment (VADM) high at ∼15–18 ka followed by a drop in field strength from ∼15 to 13 ka. A revised VADM estimate calculated from Greenland 10Be ice-core flux using a contemporary age model is remarkably consistent with the new overall RPI stack, based on Iberian Margin and global RPI records. The elevated atmospheric 14C levels of the last ice age cannot, however, be fully explained by this RPI stack although relative changes such as the long-term drop in atmospheric 14C from 30 to 15 ka are reproduced, supporting the hypothesis of a combined influence of production rate and ocean ventilation on 14C during the last ice age.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view