SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Charlou J.L) "

Search: WFRF:(Charlou J.L)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Konn, C., et al. (author)
  • New insight into the contributions of thermogenic processes and biogenic sources to the generation of organic compounds in hydrothermal fluids
  • 2011
  • In: Geobiology. - : Wiley. - 1472-4677 .- 1472-4669. ; 9:1, s. 79-93
  • Journal article (peer-reviewed)abstract
    • Experiments on hydrothermal degradation of Pyrococcus abyssi biomass were conducted at elevated pressure (40 MPa) over a 200–450 °C temperature range in sapphire reaction cells. Few organic compounds could be detected in the 200 °C experiment. This lack was attributed to an incomplete degradation of P. abyssi cells. On the contrary, a wide range of soluble organic molecules were generated at temperatures ≥350 °C including toluene, styrene, C8–C16 alkyl-benzenes, naphthalene, C11–C16 alkyl-naphthalenes, even carbon number C12–C18 polycyclic aromatic hydrocarbons, C15–C18 alkyl-phenanthrenes and C8:0–C16:0 n-carboxylic acids. The effect of time on the final organic composition of the degraded P. abyssi solutions at 350 °C was also investigated. For that purpose the biomass was exposed for 10, 20, 60, 90, 270 and 720 min at 350 °C. We observed a similar effect of temperature and time on the chemical diversity obtained. In addition, temperature and time increased the degree of alkylation of alkyl-benzenes. This study offers additional evidence that a portion of the aliphatic hydrocarbons present in the fluids from the Rainbow ultramafic-hosted hydrothermal field may be abiogenic whereas a portion of the aromatic hydrocarbons and n-carboxylic acids may have a biogenic origin. We suggest that aromatic hydrocarbons and linear fatty acids at the Rainbow site may be derived directly from thermogenic alteration of material from the sub-seafloor biosphere. Yet we infer that the formation and dissolution of carboxylic acids in hydrothermal fluids may be controlled by other processes than in our experiments.
  •  
4.
  •  
5.
  • Konn, C., et al. (author)
  • The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Ridge
  • 2015
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 15:5, s. 381-399
  • Research review (peer-reviewed)abstract
    • Both hydrogen and methane are consistently discharged in large quantities in hydrothermal fluids issued from ultramafic-hosted hydrothermal fields discovered along the Mid-Atlantic Ridge. Considering the vast number of these fields discovered or inferred, hydrothermal fluxes represent a significant input of H-2 and CH4 to the ocean. Although there are lines of evidence of their abiogenic formation from stable C and H isotope results, laboratory experiments, and thermodynamic data, neither their origin nor the reaction pathways generating these gases have been fully constrained yet. Organic compounds detected in the fluids may also be derived from abiotic reactions. Although thermodynamics are favorable and extensive experimental work has been done on Fischer-Tropsch-type reactions, for instance, nothing is clear yet about their origin and formation mechanism from actual data. Since chemolithotrophic microbial communities commonly colonize hydrothermal vents, biogenic and thermogenic processes are likely to contribute to the production of H-2, CH4, and other organic compounds. There seems to be a consensus toward a mixed origin (both sources and processes) that is consistent with the ambiguous nature of the isotopic data. But the question that remains is, to what proportions? More systematic experiments as well as integrated geochemical approaches are needed to disentangle hydrothermal geochemistry. This understanding is of prime importance considering the implications of hydrothermal H-2, CH4, and organic compounds for the ocean global budget, global cycles, and the origin of life.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view