SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Charrieau Laurie M.) "

Search: WFRF:(Charrieau Laurie M.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Charrieau, Laurie M., et al. (author)
  • Decalcification and survival of benthic foraminifera under the combined impacts of varying pH and salinity
  • 2018
  • In: Marine Environmental Research. - : Elsevier BV. - 0141-1136. ; 138, s. 36-45
  • Journal article (peer-reviewed)abstract
    • Coastal areas display natural large environmental variability such as frequent changes in salinity, pH, and carbonate chemistry. Anthropogenic impacts – especially ocean acidification – increase this variability, which may affect the living conditions of coastal species, particularly, calcifiers. We performed culture experiments on living benthic foraminifera to study the combined effects of lowered pH and salinity on the calcification abilities and survival of the coastal, calcitic species Ammonia sp. and Elphidium crispum. We found that in open ocean conditions (salinity ∼35) and lower pH than usual values for these species, the specimens displayed resistance to shell (test) dissolution for a longer time than in brackish conditions (salinity ∼5 to 20). However, the response was species specific as Ammonia sp. specimens survived longer than E. crispum specimens when placed in the same conditions of salinity and pH. Living, decalcified juveniles of Ammonia sp. were observed and we show that desalination is one cause for the decalcification. Finally, we highlight the ability of foraminifera to survive under Ωcalc < 1, and that high salinity and [Ca2+] as building blocks are crucial for the foraminiferal calcification process.
  •  
2.
  • Charrieau, Laurie M., et al. (author)
  • Improved wet splitter for micropalaeontological analysis, and assessment of uncertainty using data from splitters
  • 2018
  • In: Journal of Micropalaeontology. - : Copernicus GmbH. - 0262-821X .- 2041-4978. ; 37:1, s. 191-194
  • Journal article (peer-reviewed)abstract
    • Analyses of foraminiferal assemblages have often been implemented on dry samples, which are easy to split. In some cases, the wet-picking method is preferred as it allows the preservation of more foraminiferal forms and facilitates the picking of live foraminifera. However, the increased execution time needed for wet picking may cause micropalaeontologists to refrain from employing it in a routine way. Here we present an improved and cost-effective wet splitter (including a 3-D printing file) for micropalaeontological samples aimed to reduce picking time while keeping information loss to a minimum. We demonstrate small sample losses as well as statistical consistency across splits. We show that the time saved picking a subset will always be larger than the relative increase in statistical uncertainty.
  •  
3.
  • Charrieau, Laurie M., et al. (author)
  • The effects of multiple stressors on the distribution of coastal benthic foraminifera: A case study from the Skagerrak-Baltic Sea region
  • 2018
  • In: Marine Micropaleontology. - : Elsevier BV. - 0377-8398. ; 139, s. 42-56
  • Journal article (peer-reviewed)abstract
    • Coastal ecosystems are subjected to both large natural variability and increasing anthropogenic impact on environmental parameters such as changes in salinity, temperature, and pH. This study documents the distribution of living benthic foraminifera under the influence of multiple environmental stressors in the Skagerrak-Baltic Sea region. Sediment core tops were studied at five sites along a transect from the Skagerrak to the Baltic Sea, with strong environmental gradients, especially in terms of salinity, pH, calcium carbonate saturation and dissolved oxygen concentration in the bottom water and pore water. We found that living foraminiferal densities and species richness were higher at the Skagerrak station, where the general living conditions were relatively beneficial for Foraminifera, with higher salinity and Ωcalc in the water column and higher pH and oxygen concentration in the bottom and pore water. The most common species reported at each station reflect the differences in the environmental conditions between the stations. The dominant species were Cassidulina laevigata and Hyalinea balthica in the Skagerrak, Stainforthia fusiformis, Nonionella aff. stella and Nonionoides turgida in the Kattegat and N. aff. stella and Nonionellina labradorica in the Öresund. The most adverse conditions, such as low salinity, low Ωcalc, low dissolved oxygen concentrations and low pH, were noted at the Baltic Sea stations, where the calcareous tests of the dominant living taxa Ammonia spp. and Elphidium spp. were partially to completely dissolved, probably due to a combination of different stressors affecting the required energy for biomineralization. Even though Foraminifera are able to live in extremely varying environmental conditions, the present results suggest that the benthic coastal ecosystems in the studied region, which are apparently affected by an increase in the range of environmental variability, will probably be even more influenced by a future increase in anthropogenic impacts, including coastal ocean acidification and deoxygenation.
  •  
4.
  • Choquel, Constance, et al. (author)
  • 3D morphological variability in foraminifera unravel environmental changes in the Baltic Sea entrance over the last 200 years
  • 2023
  • In: Frontiers in Earth Science. - 2296-6463. ; 11
  • Journal article (peer-reviewed)abstract
    • Human activities in coastal areas have intensified over the last 200 years, impacting also high-latitude regions such as the Baltic Sea. Benthic foraminifera, protists often with calcite shells (tests), are typically well preserved in marine sediments and known to record past bottom-water conditions. Morphological analyses of marine shells acquired by microcomputed tomography (µCT) have made significant progress toward a better understanding of recent environmental changes. However, limited access to data processing and a lack of guidelines persist when using open-source software adaptable to different microfossil shapes. This study provides a post-data routine to analyze the entire test parameters: average thickness, calcite volume, calcite surface area, number of pores, pore density, and calcite surface area/volume ratio. A case study was used to illustrate this method: 3D time series (i.e., 4D) of Elphidium clavatum specimens recording environmental conditions in the Baltic Sea entrance from the period early industrial (the 1800s) to present-day (the 2010 s). Long-term morphological trends in the foraminiferal record revealed that modern specimens have ∼28% thinner tests and ∼91% more pores than their historic counterparts. However, morphological variability between specimens and the BFAR (specimens cm−2 yr−1) in E. clavatum were not always synchronous. While the BFAR remained unchanged, morphological variability was linked to natural environmental fluctuations in the early industrial period and the consequences of anthropogenic climate change in the 21st century. During the period 1940–2000 s, the variations in BFAR were synchronous with morphological variability, revealing both the effects of the increase in human activities and major hydrographic changes. Finally, our interpretations, based on E. clavatum morphological variations, highlight environmental changes in the Baltic Sea area, supporting those documented by the foraminiferal assemblages.
  •  
5.
  • Ljung, Karl, et al. (author)
  • Recent Increased Loading of Carbonaceous Pollution from Biomass Burning in the Baltic Sea
  • 2022
  • In: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 7, s. 35102-35108
  • Journal article (peer-reviewed)abstract
    • Black carbon (BC), spheroidal carbonaceous particles (SCP), and polycyclic aromatic hydrocarbons (PAH) are carbonaceous pollutants affecting the climate, environment, and human health. International regulations limit their emissions, and the present emissions are followed by monitoring programs. However, the monitoring programs have limited spatio-temporal coverage and only span the last decades. We can extend the knowledge of historical emission rates by measuring pollution levels in radiometrically dated marine and lacustrine sediment sequences. Here we present measurements of BC, SCP, and PAH from a sediment sequence sampled in the Öresund strait, between Denmark and Sweden and dated back to CE 1850. Our data show a massive increase in the burial rates of all measured pollutants starting in the 1940s. The pollution deposition peaked in the 1970-1980s and declined through the 1990s. However, the declining trend was reversed in the 2000s. Source appointment of PAHs shows a relatively higher contribution of emissions from wood-burning since CE 2000. This coincides with a change towards the increased use of biomass for both municipal and regional energy production in Scandinavia. Our results demonstrate that changes in energy production have caused changes in the delivery of carbonaceous pollution to marine environments. The increase in particle emissions from wood burning is potentially posing a future environmental and health risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view