SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Cheong Paul Ha Yeon) "

Search: WFRF:(Cheong Paul Ha Yeon)

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Titaley, Ivan, 1990-, et al. (author)
  • Evaluating Computational and Structural Approaches to Predict Transformation Products of Polycyclic Aromatic Hydrocarbons
  • 2019
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 53:3, s. 1595-1607
  • Journal article (peer-reviewed)abstract
    • Polycyclic aromatic hydrocarbons (PAHs) undergo transformation reactions with atmospheric photochemical oxidants, such as hydroxyl radicals (OH center dot), nitrogen oxides (NOx), and ozone (O-3). The most common PAH-transformation products (PAH-TPs) are nitrated, oxygenated, and hydroxylated PAHs (NPAHs, OPAHs, and OHPAHs, respectively), some of which are known to pose potential human health concerns. We sampled four theoretical approaches for predicting the location of reactive sites on PAHs (i.e., the carbon where atmospheric oxidants attack), and hence the chemoselectivity of the PAHs. All computed results are based on density functional theory (B3LYP/6-31G(d) optimized structures and energies). The four approaches are (1) Clar's prediction of aromatic resonance structures, (2) thermodynamic stability of all OHPAH adduct intermediates, (3) computed atomic charges (Natural Bond order, ChelpG, and Mulliken) at each carbon on the PAH, and (4) average local ionization energy (ALIE) at atom or bond sites. To evaluate the accuracy of these approaches, the predicted PAH-TPs were compared to published laboratory observations of major NPAH, OPAH, and OHPAH products in both gas and particle phases. We found that the Clar's resonance structures were able to predict the least stable rings on the PAHs but did not offer insights in terms of which individual carbon is most reactive. The OHPAH adduct thermodynamics and the ALIE approaches were the most accurate when compared to laboratory data, showing great potential for predicting the formation of previously unstudied PAH-TPs that are likely to form in the atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Titaley, Ivan, 1990- (1)
Ogba, O. Maduka (1)
Simonich, Staci L. M ... (1)
Walden, Daniel M. (1)
Dorn, Shelby E. (1)
Cheong, Paul Ha-Yeon (1)
University
Örebro University (1)
Language
English (1)
Research subject (UKÄ/SCB)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view